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Preface 

This book is designed for people with a working knowledge of APL who 
would like to increase their fluency in the wide range of extra facilities offered 
by second-generation APL products. Although the primary product in view is 
IBM's APL2 as implemented on mainframe, PC and RS/6000, the language fea
tures covered share considerable common ground with APL *PLUS II and 
Oyalog APL. This is a book about skills rather than knowledge, and an 
acquaintance with some variety of APL on the reader's part is assumed from 
the start. It is designed to be read as a continuous text, interspersed with exer
cises designed to give progressively deeper insight into what the authors conceive 
as the features which have the greatest impact on programming techniques. It 
would also be suitable as a text-book for a second course in APL2, although 
experience suggests that most programming language learning is now by self
study, so that this volume is more likely to provide follow-up reading to more 
elementary texts such as "APL2 at a Glance" by Brown, Pakin and Polivka. 
Material is discussed more informally than in a language manual - in this book 
textual bulk is in proportion to difficulty and importance rather than to the 
extent of technical details. Indeed, some APL2 extensions are not covered at all 
where the technicalities pose no great problems in understanding and can be 
readily assimilated from the language manuals. 

Second-generation APL is dominated by two ideas - nested arrays and oper
ator extension. Nested arrays are in principle so simple a concept that only a 
few minutes are needed for an experienced APL user to read and absorb their 
technical specifications, and also those of the closely associated functions 
enclose, disclose and depth, and the operator each. Nevertheless the increase in 
expressiveness and potential complexity which these few simple ideas add is 
truly astonishing. 

The first chapter discusses APL2 arrays and functions, grouping the latter 
into broad areas such as structuring, selection and inquiry. Chapter 2 considers 
operators, both primitive and user-defined. Chapter 3 contains demonstrations 
to show how nested arrays deal with simple data structures in a way which 
makes their behavior comprehensible and useful to people with very limited pro-
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gramming background and experience. Chapters 4-6 then retrace and develop 
the ideas of chapters 1-3. Chapter 4 develops the ideas of chapter 1, but 
focusing more on the way in which functions interact. Chapter 5 develops the 
Chapter 2 discussion of operators in a similar way, and Chapter 6 gives more 
sophisticated examples which use all the powerful features of APL2 which have 
been developed in the previous five chapters. 

Applications 

Using APL2 to its full capability is a skill whose acquisition takes time and 
patience which are an order of magnitude greater than the skills needed for a 
mastery of first-generation APLs. The reward, on the other hand, is the stim
ulus of a language whose exploration is a source of constant delight through its 
seemingly endless capacity for expressing ideas of indefinite complexity in unam
biguous and succinct terms. 

Of the existing APL texts and primers, some were originally first-generation 
APL works upgraded to APL2 by the addition of new sections and appendices. 
Others assume that APL2 is the first language which the user encounters. This 
book is addressed to the thousands of people, some programmers and some not, 
who have achieved both enhancement to their professional skills and personal 
satisfaction in learning and using APL, and who would like to build on this 
foundation by acquiring a matching fluency in the skills associated with APL2. 

Extra weight is therefore given in the text to those APL2 language features 
which extend user versatility in describing data structures and communicating 
algorithms in ways which mirror current thinking in computing science and soft
ware engineering. 

The exercises are designed to give the reader practice in these processes. Fre
quently, subtler points of difference are best illustrated by exercises with long 
sequences of similar expressions to be evaluated. With many exercises, a few 
keystrokes on a terminal will deliver the answer, and whilst the reader is encour
aged to use a computer as a check, the fullest value of most exercises is obtained 
by predicting the result before having the computer deliver it. All solutions are 
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given in an appendix so that it is possible to use the book as a study guide even 
without the availability of an APL2 system. 

The functions, operators, and much of the data in the text are available on a 
3.5" disk. Either of the authors can supply particulars. 

APL2 has its roots in Ken Iverson's original concepts of a symbolic notation 
for use with computers. Through the efforts over the years of Jim Brown and his 
team at IBM's Santa Teresa Laboratory these have matured into a language 
which can be consistently used through the whole range of software develop
ment, that is specification, design, coding, and testing. We have attempted to 
penetrate beyond the mere description of the syntax and semantics of the lan
guage and provide a study in greater depth of the interaction between nested 
arrays and the various functions and operators. We hope that the present work, 
"APL2 in Depth" will encourage greater use of APL2. 

We should like to acknowledge the thorough and thoughtful review by Curtis 
Jones, without which this text would have been greatly poorer, and also helpful 
comments and suggestions from Garth Foster, Helmut Engelke, Bert 
Rosencrantz, Phil Benkard, and Ron Wilks. We are also greatly indebted to 
Jon McGrew for his invaluable help in the typographical preparation of the text. 

Ray Polivka 
60 Timberline Drive 
Poughkeepsie, New York 12603 
USA 

Norman Thomson 
Finnock House 
Cliff Terrace Rd. 
Wemyss Bay 
Scotland PA18 6AP 



Conventions Used for Arrays, Functions, 
Operators and Indentities 

Names of Arrays 

A general principle is that "small" arrays, that is those which require fewer than 
15 non-blank characters to construct them by direct keyboard entry, are given 
either meaningful names, or one-character names, usually s for scalar, V for 
vector, M for matrix, A for array. Larger objects are given either descriptive 
names or a name such as V23 which denotes the third vector defined in Chapter 
2. Objects so named are stored on the disk which is available to accompany the 
book. 

Functions and Operators 

When a word like "pick" is used in its specific role as an APL function or oper
ator, it is printed in a heavy font thus: pick. 

The following conventions are used in writing defined functions and opera
tors: 

F a function 
z result of a function or derived function 

L, R left and right arguments of a function 
P, Q left and right operands of an operator 

T, U, V local variables 

Operations which behave identically, or nearly so, but contain different code 
are distinguished by using different combinations of upper and lower case letters 
in their names. 

A subsidiary operation is indicated by the prefix 6. 
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Labels and Comments 

Labels are named L 1. L2. L3. ... and so on. 
The general format for a line in an operation (i.e. a function or operator) is: 

[line-number] Lnl expression FI comment 

There are several distinguishable uses for comments, in particular they may 
describe 

(a) constraints on arguments and operands prior to execution; 
(b) description of a result following execution; 
(c) effects on global variables in the workspace; 
(d) clarification in words of a single APL line; 
(e) description of current execution status of data and/or a program. 

Comments are permitted on the header line in many APL2 implementations. 
Where type (a) comments can be expressed sufficiently briefly this usage is 
adopted, otherwise they are given in separate lines at the head of the function. 
Most of the functions in this book are very short, and the emphasis is on trans
forming ideas into APL2 program fragments rather than on the development of 
programming systems where type (e) comments are more likely to be found. 
Where these occur in production APL2 code they frequently indicate the possi
bility of breaking down a function into subfunctions. 

Labels may be floating, that is a function line may consist of a label and its 
colon only, possibly with a comment. Judicious use of the floating label and 
comment combination can add considerably to legibility, adaptability and main
tenance of functions. Floating labels used in this way are another frequent indi
cation of suitable points for subdividing a function into subfunctions. 

Identities 

The symbol ++ is used to denote "is identically equal to." 
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1 
Functions and Arrays in APL2 

Compared with first-generation APL, APL2 brought about a vast explosion in 
the amount of data types and structures which can be modelled. This chapter 
starts with a discussion of data structures in APL2, beginning with nested 
arrays and followed by some notes on complex numbers. There then follows a 
discussion of the principal APL2 primitive functions under the headings of 

Construction 
Selection 
Replacement 
Restructuring 
Comparison and Enquiry 

1.1 Nested Arrays and Depth 

An APL2 array is an object which possesses two properties namely data and 
structure, the latter of which has two measures, namely shape and depth. An 
array may be of any dimension, and scalar, vector and matrix are special names 
describing the special cases of 0, I and 2 dimensions respectively. The principal 
feature which distinguishes second-generation APLs is the concept of nested 
arrays of which the following is an example: 

M11+2 2p'CHARS' (14) (2 2p'ABCD') 16 

A nested array is an array in which any item may itself be an array, and at least 
one item has rank greater than zero. APL2 arrays are distinguished by two 
characteristics not available in first-generation APL, namely 

1. heterogeneity (mixed data types) 
2. depth (nested arrays) 

DISPLAY is a function which comes in a workspace distributed with the IBM 
products and which reveals the structure of objects with regard to nestedness, 
for example: 



2 

DISPLAY M11 
r+'------------------~ 

'" r---, 
I I CHARS I 
I 
I r+--, 
I "'ABI 
I ICDI 
I L.....J 

r+ I 
11 2 3 41 
L... __ ---I 

16 

L€ __________________ ~ 

2 

The depth of M11 is given by 

:M11 

APL2 IN DEPTH 

i.e. two is the maximum number of line crossings in DISPLAY M11 required to 
reach the most deeply nested part of the array. The arrows on a DISPLAY box 
indicate separate axes, and so the total number of arrows is the rank of the 
array. 

Every array possesses (a) data, and (b) structure, i.e. shape and depth. Shape 
relates to the data organization at any given level of nesting. Distinction is 
made between an item of an APL2 array, and the contents of the item, a term 
which implies the removal of one level of structure. The contents in general will 
consist of further APL2 arrays which may themselves possess structure, and so 
on in a nested fashion. For example the item of M which occupies the first row 
first column position is a five-item character vector whose contents are the five 
characters • c· • H' • A' • R' and • S'. Evaluation of APL expressions thus 
involves a structure phase which logically precedes evaluation of data values in a 
function phase. 

The depth of an array relates to the nesting of the data items. While shape (p) 
determines the shape and rank of an object, depth (:) indicates the degree of 
nesting within an array. It returns a non-negative integer which defines the 
maximum number of levels of structure to be penetrated in order to get to a 
simple scalar where simple means non-nested. 

Here is a more elaborate example: 
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A+'CHARS' 
B+t3 
C+'A'2'B' 
D+tO 
E+2 2p'ABCD' 
F+2 2p2 4'AB'(t3) 
V11+A BCD E F 5 '5' 
DISPLAY V11 

r+-------------------------------------------------------" 
I r+---, r+---, r+---, re, r+-, r+---------, I 
I I CHARS I I 1 2 3 I I A 2 B I I 0 I .j, AB I.j, 2 4 5 5 I 
I L~-----l L+-----l L~J I CD I I - I 

I L--J I r+-, r''''> ----, I 
I I IABI 11 2 31 I 
I I L--J ~-----l I 
I L(; _______ -' I 
L(; ______________________________________________________ ~ 

3 

The top left corner of a DISPLAY box contains information about rank and 
emptiness thus: 

+ and .j, denote the first and subsequent dimensions respectively; 
e and <Il denote emptiness, if present, in these dimensions. 

In the case of an empty array, DISPLAY exhibits the non-empty dimensions, 
using the prototype of the array to show all items. The prototype of any array is 
another array which indicates the type and structure of its first item but not its 
data. If an array has no non-zero dimensions, its DISPLAY box nevertheless 
indicates its rank (in the case of a scalar by omitting the box altogether), and 
the contents are either a 0 indicating numeric, or a blank indicating character. 
The DISPLAY of an empty numeric vector is thus a box containing 0, that of a 
numeric array with shape vector 0 4 is a box containing a vector of four zeros, 
and that of an array with shape vector 2 0 4 is a box containing a 2 by 4 
matrix of zeros. The function PROTO below defines prototype, and is discussed 
in more detail in Chapter 4. PROTO also illustrates the style of function display 
which will be followed in this book, that is with no VS, and with the header line 
numbered [OJ. 

[OJ Z+PROTO R 
[1 J Z+tOpR 

The bottom left corner of a DISPLAY box contains information about type and 
depth according to the following code: 

No symbol character data 
scalar blank or character scalar (e.g. final 5 above) 

when non-scalar arrays are present 
simple numeric 

+ simple mixed character and numeric 
(; nested 



4 APL2 IN DEPTH 

1.1.1 Complex Numbers 

A further advance with second-generation APLs is the admission of complex 
numbers. In APL2 complex numbers may be expressed either in Cartesian or in 
polar form so (0 + jl) can be represented in two equivalent ways: 

(OJ1l:;1D90 

+c returns the complex conjugate of c. I c returns the magnitude (absolute 
value) of c. 

RA+OJ1 xIA combines dimensionally compatible arrays RA and IA, repres
enting real and imaginary parts, into a single complex array. 

The circle function 0 is extended to make it easy to carry out standard math
ematical operations with complex numbers thus: 

left argument 
9 Real part 

Argument 
C (i.e. null function) 
conjugate of C (i.e. +c) 

Imaginary part 
Phase 
Cj (i.e. CxOJ1) 
exp(Cj) 

left argument 
11 

If C is thought of as a point in the Argand Diagram with 0 as the origin, 
-100C represents the reflection of OC in the real axis, and -11 oC represents its 
anticlockwise rotation by one right angle. 

9 11·. oC breaks a complex array into real and imaginary parts and its 
shape is 2. pc. 

9 110cC also breaks a complex array into real and imaginary parts but the 
result is nested of shape 2. 

OJ1 x+C exchanges real and imaginary parts. 

illustrations : Complex numbers 

a. The fourth root of j (OJ1) can be obtained in two ways, viz. 

C1101l*.25 
O.92388JO.38268 

OJ1*.25 
O.92388JO.38268 

b. The classical equation in mathematics connecting e, re, and j, namely 
exp( nj) = -1, is: 

-12001 
-1 

c. De Moivre's theorem is illustrated by: 
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THETA+1203J1 
(-120THETA)*4 

0.28JO.96 
-1204xTHETA 

0.28JO.96 

d. Find the square root of 

5-j15 

3-j 

and verify the result: 

(SJ-1S+3J-1)*.S 

1 

A (expj9) to power 4 

A exp j49 

1.2 Construction of Arrays 

5 

Vectors are no less useful in APL2 than in first-generation APLs. They may be 
constructed either 

explicitly through a number of functions such as ravel, reshape, catenation 
and enlist; or 

implicitly through vector notation. 

1.2.1 Vector Notation 

The standard syntax for constructing numeric vectors from simple scalars is to 
separate items with spaces thus: 

10 20 30 

It is possible to construct character vectors in the same way: 

'A' 'P' 'L' 

as well as in the more common fashion' APL'. Vector notation allows any item 
to be replaced by a variable name or a parenthesized expression, e.g. 

A B 20 

10 'A' (X=2) 

In the last example the parentheses are essential to achieve the required 
grouping into three terms. Without them the items form two groups, three of 
them in the left argument of = and one in the right. 

Such parenthetical groupings may be nested, for example 
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DISPLAY V12+12 (13 (14 15» (16 17) 

r+------------------------~ 
I 
I 12 
I 
I 
I 

I 
I 13 
I 

r· I 
114 151 
I-.-----l 

L€ ________ ..... 

r· I 

L€ ________________________ ~ 

(pV12).:V12 
3 3 
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Parentheses in conjunction with vector notation are used as a form of implicit 
enclosure. They are non-redundant if they serve both to group and separate, 
regardless of where they appear in an expression. Vector notation was originally 
called "strand notation," and the terms are equivalent. 

illustration: Separating and Grouping 

Consider the following expressions 

a. (10 20) 
b. 10 (20) 
c. 10 (20) 30 
d. 10 20 «30 40» 
e. 10 (r5.6) 30 
f. 10 (20 30) (40 50) 

In the first three, the parentheses are redundant, in (a) they group but do not 
separate, in (b) and (c) they separate but do not group. In (d) one set of paren
theses is redundant - the inner ones group but do not separate, while the outer 
ones separate but do not group. In the non-redundant case (e) the parentheses 
define a subexpression, while in (f) both sets of brackets both group and sepa
rate. 

Such distinctions are also indicated in the APL2 default output display by the 
use of indentation to show depth, for example 

10 20 30 
10 20 30 

10(20 30) 
10 20 30 

DISPLAY serves the same function but makes the difference even clearer: 

DISPLAY"(10 20 30)(10(20 30)) 

r· I 
110 20 301 
1-. ___ ..... 

r· 
I r· I 
I 10 120 30 I 
I I-.-----l 
L€ _____ ...J 
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Exercises 1a 

1. Sketch the graphic picture which the DISPLAY function would produce for 
the following: 

a. 'ABC' 17.6 
b. 2 3p2 2 4 
c. 2 3 4p2 2 4 
d. 2 4p'ABC' , , , , '6'(12)(10)9 6 
e. 'A' 7.5 5 '5' 
f. 0 3pS 
g. 0 3p 'A' 
h. 0 3p 5 'A' 
i. 3 Op 5 'A' 
j. 0 3p(S 'A' )4 
k. 0 3p( 'B'6) (S'A') 
1. 0 ope 'B'6) (S'A') 
m. 0 2 ope 'B'6) (S'A') 

In each case what is the prototype? 

2. Two empty arrays are displayed below which differ in two details. Use the 
rules for DISPLAY boxes to find APL2 expressions which could have generated 
them. 

1 r---' 
1 10 01 
1 L..-l 
LE:-----' 

I 
1 r+~ 
I <1>0 01 
I L~-l 

LE:-----' 

3. Write a monadic function DIS which on the first line displays the shape and 
depth of its argument thus 

SHAPE: 2 DEPTH: 3 

and on the following lines shows the result of DISPLAying the argument. This 
function can be used to give the total descriptions of APL2 objects which are the 
subject of exercises 4-6. 

4. a. What are the value, shape and depth of 1 (2 3) + ( 13) 4 ? 

b. If A+4 5 
3p(A B)C ? 

B+3 C+' APL' , what are the value, shape and depth of 

5. With A and B defined as in qn. 4, what is the difference between 

a. A BxS A and b. A(BxS)A ? 
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6. (i) If A+2 3p 16 and B+3, all but two of the expressions below are of shape 
two - which are the two? 

a. (A+1)A f. (pA)(pB) 
b. A 2 g. «pA) (pB» 
c. A 2 -1 h. A B 
d. A 2 -1 i. 'A' 'P' 'L' 
e. A(2(3 4» j. 'AP' 'L' 

(ii) All but two are of depth two - which are they? 

7. What can be said about the value of (pA) 1 pA where A is any array? If it has 
no value, what type of error is generated and why? 

8. Within each row which expressions are identical for a general array B? 

(i) a. B+ 13 b.(B+13) c. «B+13» 

(ii) a. B(B+1) (B+2) b. B (B+1) (B+2) c. B(B+1 )B+2 

(iii) a. B BpS 6 b. B(Bp5 6) c. (B B)p5 6 

9. a. What fact about complex numbers is expressed by the identity 

(Cx+C) ++ (IC)*2 ? 

b. Write a function QUAD whose argument is the vector of coefficients (not 
necessarily real) of a quadratic equation in descending power order, and whose 
result is a two-item vector of roots. Use QUAD to display the roots as a two
column matrix with the real parts in the first column and the imaginary parts in 
the second column. Illustrate by solving X2 + x + 1 = o. 

Obtain the values of QUAD 1 2J3 4J-1. How would you confirm that 
these were indeed the roots? 
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1.2.2 Enlist 

While the primary means of constructing arrays is the shape function, other 
primitive functions allow alternative construction techniques, e.g. enlist and ravel 
with axis. Enlist returns a simple (i.e. non-nested) vector whose items are the 
simple scalars of its argument in order. It thus removes all nested depth - analo
gous to the way in which ravel reduces dimensionality for simple arrays. 

V12+12(13(14 15))(16 17) 
€V12 

12 13 14 15 16 17 

1.2.3 Ravel with Axis 

In APL2 ravel is extended to allow qualification with axes. The qualifier must 
be simple and, assuming OIO= 1, may be any of 

(a) a positive integer scalar in the range I to the rank of the argument; 
(b) a vector of consecutive integers from this range; 
(c) a positive fraction not exceeding one more than the argument rank; 
(d) 10. 

Case (a) means do nothing, that is A:. [NJA for any valid integer N. 
For case (b), .[tppAJ is equivalent to ravel without axes, so for a three

dimensional array, there are two meaningful cases as illustrated below: 

SPARE 
A 
DIME 

NO 
THANK 
YOU 

235 

SPARE 
A 
DIME 
NO 
THANK 
YOU 
6 5 

A11 

pA11 

pO+.[1 2JA11 

pO+.[2 3JA11 
SPAREA DIME 
NO THANKYOU 
2 15 

The effect on the shape vector is to merge a consecutive pair of items by multi
plication. 
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Case (c) is similar to laminate in that a new axis is inserted whose contribution 
to the shape vector is 1 (with laminate the contribution is 2). In the case of a 
3-dimensional array there are four possibilities the first three of which are 

DISPLAY. [ • 1 ]A 11 A dimension vector = 1 2 3 5 

rrr+---, 
Hoi-SPARE I 
IliA I 
IIIDIME I 
III I 
IIINO I 
II I THANK I 
IIIYOU I 
LLIL.. __ ..J 

DISPLAY. [1 .1 ]A 11 A dimension vector = 2 1 3 5 
rrr ... ·---, 
4-HSPARE 
IliA 
IIIDIME 
III 
III 
IIINO 
I I I THANK 
IIIYOU 
LL ... ' __ .... 

DISPLAY.[2.1]A11 A dimension vector = 2 3 1 5 
rrr-r ... • ----, 
H4-SPARE 
III 
lilA 
III 
IIIDIME 
III 
III 
IIINO 
III 
I II THANK 
III 
IIIYOU 
LLL..' __ ..J 

The fourth possibility of case (c), namely • [3.1 ]A 11 has the same effect as 
case (d), that is if the qualifier is lOa 1 is catenated to the end of the shape 
vector and the array restructured. In the particular case of vectors the result is 
a column matrix of shape (p V) • 1. This is a convenient way of converting a row 
vector into a one-column matrix, e.g. 
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12 
13 
14 
15 
16 
17 

,[10]€V12+12(13(14 15»(16 17) 

1.2.4 Default Display of Arrays 

11 

The default output routines for mixed character and numeric data use rules that 
guarantee a pleasing and intelligible display in the great majority of cases. In 
brief, numeric items in columns have decimal points aligned and columns are 
right justified unless they contain only character data in which case they are left 
justified. The combination of vector notation and these rules makes the writing 
of ad hoc reports a great deal easier as the following illustration shows. 

Illustration : Writing Reports 

ROWS+'FRANCE' 'GERMANY' 'SPAIN' 
COLS+" 'JAN' 'FEB' 'MAR' 
SALES+3 3p52.3 12.95 34 15.3 9.5 12.25 20 35.5 39 

COLS,[1]ROWS,SALES 
JAN FEB MAR 

FRANCE 52.3 12.95 34 
GERMANY 15.3 9.5 12.25 
SPAIN 20 35.5 39 

1.2.5 Enclose and Disclose 

Array structure can be created, removed and altered using the functions 

enclose( c: ) 
enclose with axis( c: [I ] ), 
disclose(::> ), 
disclose with axis(::> [ I ] ) 

While vector notation imparts structure to the vector it creates, the enclose 
function (c:) is necessary to establish a bounding structural layer around any 
object other than a simple scalar. The result of enclosure is always a scalar. For 
example 

3 4pc:'APL2' 
APL2 APL2 APL2 APL2 
APL2 APL2 APL2 APL2 
APL2 APL2 APL2 APL2 
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creates a matrix each item of which is the scalar produced by enclosing' APL2'. 
The vector V12 of Section 1.2.1 could equally have been created by explicit 

use of the enclose function, viz. 

V12+12.(c13.c14 15).c16 17 

(pV12)(::V12) 
3 3 

For simple scalars only it is true that 

S is equivalent to cS 

Thus repeated enclosure of a simple (Le. non-nested) scalar has no effect on it. 
It is like a cork on water - however hard it is hit, it continues to float. This can 
be used as a test for simple scalars, and IBM APL2s are sometimes referred to 
as "floating systems" as opposed to "grounded" systems. 

Disclose is the monadic form of ;:). It reduces depth throughout an entire 
object. It removes one layer of nesting (assuming at least one exists) and there
fore acts as an inverse to c: 

DISPLAY ;:)c(1 2)(3 4) 
r· 
1 r+---, r+---, 
1 11 21 13 41 
1 L...---l L...---l 
L€ ______ ..... 

Disclose is valid only for arrays whose items at the top level have the same rank, 
although they do not require to have the same shape. When they do, disclose 
brings a shape component from the internal structure to the outer structure: 

p ( 1 2 3)' APL' 
2 

;:) ( 1 2 3) 'APL' 
1 2 3 
A P L 

p;:)(1 23)'APL' 
2 3 

If objects at the topmost level do not have the same shape padding is necessary 
to preserve rectangularity: 

;:)(1 2)3'APL' 
1 2 0 
3 0 0 
A P L 

V12+12.(c13.c14 15).c1617 
;:)V12 

12 0 
13 14 15 
16 17 
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Exercises 1 b 

1. This exercise tests understanding of the floating scalar rule, that is that 
S++cS for scalar s. 

(i) Are there any differences between the following six phrases when A, Band 
C are all numeric scalars? 

a. A,B,C d. «A) (B) (C» 

b. ABC e. (cA) (cB) (cC) 
C. (A) (B) (C) f (cA),(cB),(cC) 

(ii) Repeat the above assuming A, Band C are all two-item vectors, e.g. 

A+1 2 B+10 20 C+3 4 

2. If E is (2 2p' X' ) 77 ( 15) what is the difference between 

a. E,4 5 and b. E,c4 5 ? 

3. IfF is (2 3p16)3, evaluate 

a. F d. 10xF 
b. -F e. 1 2 3xcF 
C. 1 2+F f. FxF 

4. Create a 2 by 3 matrix which displays as 

APL2 APL2 APL2 
IS IS IS 

GREAT GREAT GREAT 

APL2 APL2 APL2 
IS IS IS 

GREAT GREAT GREAT 

5. Suppose Z+" and X+13. Describe in detail (that is by giving value, shape 
and depth) the values of z after each step in the following two sequences (a) and 
(b) : 

a. Z+Z,cX 
Z+Z,cX 

b. Z+Z x 
Z+Z x 

Which if any of your four answers are the same? 

6. Distinguish carefully between 

a. ",c'X' b. " 'X' 
c. ". 'x'd. "(c'X') 

Which, if any, of these four expressions are identical? 

7. If Z+' , and X+13 what are 
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a. ::oZ, eX b.::oz X 
c. ::oZ,e'X' d.::oz 'X'? 

8. What are the differences between 

a. , , ABC' , DE ' and £' ABC' , DE ' 
b. ,(1 3p'ABC')'DE' and £(1 3p'ABC')'DE'? 

9. Calendar construction 
a. Write a function MONTH which constructs a calendar for a month given the 

day of the week of day 1 as an integer from 0 to 6 (Sunday is O, ... Saturday is 6) 
together with the number of days in the month. Head each column with the 
appropriate three character title 'SUN' 'MON' ••• ' SAT'. For example 

3 MONTH 30 
SUN MON TUE WED THU FRI SAT 

1 2 3 4 
5 6 7 8 9 10 11 

12 13 14 15 16 17 18 
19 20 21 22 23 24 25 
26 27 28 29 30 

b. How would you change the calendar so as to display the weeks vertically? 

c. How would you convert the calendar mixed data type array into one of all 
characters, e.g. for transmission as an ASCII file? 

d. Assume that a twelve item global vector DAYS contains the number of days 
in each month in a non-leap year. Write a function START_DAY which takes as 
its left argument a Boolean value LEAP, as its right argument the day of the 
week of 1 Jan (as an integer), and returns the twelve item vector SD of integers 
representing the start day of the week for each month. 

e. Use SD and DAYS to produce the calendar for the entire year. Shape it to 
appear by quarter, i.e. the first three months appear as the first row, etc. 
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1.2.5.1 Partial Enclose and Disclose 

Formally partial enclose and disclose are known as enclose and disclose with 
axis. When an array is enclosed, it becomes a scalar, that is an extra layer of 
structure is added. Sometimes encapsulating the whole array as a scalar is not 
what is required, but rather enclosure along one or more of its dimensions. For 
example, given a simple matrix of names, it is useful to be able to create a vector 
of name vectors. Enclose with axis, c: [ I J A, accomplishes this, e.g. 

JOHN 
TED 
JASON 

M12+3 5p'JOHN TED JASON' 
M12 

c:[2JM12 
JOHN TED JASON 

Consider next some examples with numeric arrays: 

2 3 

4 

3 

2 3 

2 

M+2 3p\6 
pM 

c: [1]M 
2 5 3 6 
pc:[1JM 

c:[2JM 
4 5 6 

pc:[2JM 

A converts matrix into vector of column vectors 

A converts matrix into vector of row vectors 

In the next example the planes of the array A3 become two nested items: 

A+2 3 4p124 
pA 

2 3 4 
pc:[3JA 

2 3 
c:[3JA 

2 3 4 5 6 7 8 9 10 11 12 
13 14 15 16 17 18 19 20 21 22 23 24 

The axis specification is not restricted to a single axis: 

pc:[2 3JA 
2 

c:[2 3JA 
1 234 
567 8 
9 10 11 12 

13 14 15 16 
17 18 19 20 
21 22 23 24 

The rule is that the axes which are specified are those which become nested and 
thus the following identity holds: 
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c[tppA]A ++ cA 

Also the empty vector is acceptable as an axis specification, however it causes 
no enclosure: 

A ++ c[tO]A 

Disclose with axis has the reverse effect to enclose. With disclose the shape of 
the item nested at the top level of the structure become the last dimension of the 
disclosed array. Start by defining V as a vector of columns of M : 

3 

1 4 
2 5 
3 6 

3 2 

V+c[1]M+2 3pt6 
V 

42536 
pV 

=>V 

p=>V 

f'I make a vector of vectors into a matrix 

Disclose with Axis, => [I ]A, allows the shape of the nested items to be placed in 
dimensions other than the last of the newly disclosed array. The axis specified 
describes where the nested dimensions will be in the disclosed array. For 
example in making a vector of vectors into a matrix the inner-structure shape 
vector can be placed either after the existing item as in the case above, or before 
it as in 

1 2 3 
456 

2 3 

=>[1]V 

p=>[1]V 

The next example shows what happens when the axis qualifier is a vector: 

M+3 4pt12 
MM+M (-M) 
(pMM) (:MM) 

2 2 
p=>MM 

2 3 4 
p=>[1 2]MM 

3 4 2 
p=>[1 3]MM 

3 2 4 
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::>[1 3JMM 
2 3 4 

-1 -2 -3 -4 

5 6 7 8 
-5 -6 -7 -8 

9 10 11 12 
-9 -10 -11 -12 

Disclosure is not possible unless all of the items one level down are of the same 
rank. If however the items do not have the same shape padding takes place as 
in 

1 3 
2 4 
o 5 

::>[1](1 2)(3 4 5) 

The number of integers specified as axes must match the rank of the items, thus 
the following identity holds: 

(p,!) :: pptA 

In each case the shape vector item or items indexed by the axis goes into the 
inner structure, and the depth of the result is two. 

1.2.5.2 Relationship between Partial Enclosure and Axis 
Qualifiers 

An axis qualifier applied to a scalar dyadic function is equivalent to a combina
tion of enclosure and disclosure along the complementary axes: 

1 2 3 
456 

M+2 3P16 
M 

c:[1JM 
1 4 2 5 3 6 

10 20 30+c:[1JM 
11 14 22 25 33 36 

::>[1J10 20 30+c:[1JM 
11 22 33 
14 25 36 

10 20 30+[2JM 
11 22 33 
14 25 36 

These ideas extend in a natural way to arrays as the following exercise shows. 
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Exercises 1 c 

1. a. Defining M+2 4p t 8 write an expression which transforms M into a three
dimensional array each plane of which is a three-times repetition of a row of M, 
i.e. 

1 234 
234 
234 

567 8 
567 8 
567 8 

b. Defining V+ t 3 write an expression which transforms V into a three
dimensional array with two planes and four columns each column of which is V, 
i.e. 

1 1 1 1 
2 2 2 2 
3 3 3 3 

1 1 1 1 
2 2 2 2 
3 3 3 3 

2. If M13 and A 12 are defined as follows: 

M13+3 4p'ABCDEFGHIJKLM' 
A12+2 3 4p'ABCDEFGHIJKLMNOPQRSTUVWX' 

what are value, shape and depth for each of the following: 

a. c:M13 j. c:[1]A12 
b. :::>M13 k. c:[1 2]A12 
c. :::>c:M13 1. c:[1 3]A12 
d. c::::>M13 m. c:[3 1]A12 
e. c:[1]M13 n. c:[2 3]A12 
f. c:[2]M13 o. c:[3 2]A12 
g. c:[1 2]M13 p. c:[t3]A12 
h. c:[2 1]M13 q. c:[2 1 3]A12 
i. c:[tO]M13 
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1.2.6 Partition 

Partition is another form of enclosure. Enclose (cA) forms a scalar of an entire 
array A. Enclose with axis (c [IJA) forms a set of items by enclosing along spec
ified axes. Partition (VcA) and partition with axis (vc [I JA) permit grouping into 
separate items portions of data along a specific axis where the left argument of 
partition determines the nature of the enclosure and the axis specification deter
mines the axis along which the partition is to occur. 

As an example the following line constructs a three-item vector from a simple 
numeric vector. 

DISPLAY 2 2 2 3 3c12 13 14 15 16 17 
r+ 
I r-' r+ I r+----, 
I 1121 113 14 151 116 171 
I L~.....J L~ L~-----l 

L€ 

The left argument must be a sequence of non-decreasing non-negative integers, 
jumps in which correspond to the start of a new partition. In addition zeros 
may be inserted anywhere to denote that the corresponding items in the right 
argument are omitted in the result. 

DISPLAY 1 0 0 0 3 3c12 13 14 15 16 17 
r+-------------, 
I r+-, r+----, 
I 1121 116 171 
I ~.....J L~-----l 
L€ ____________ -' 

The non-zero items in the left argument do not need to be consecutive, e.g. 

1 1 3 3 7 7c'ABCDEF' 
AB CD EF 

A partition may have an axis qualifier, so a 5x6 matrix can be made into a 3x6 
matrix of vectors by e.g. 

DISPLAY 1 1 3 3 7c[1J5 6p'ABCDEF' 
r+ 

oj. r--, r-' r+-, r+-, r-' r--, 
I IAAI IBBI ICCI 1001 IEEI IFFI 
I L-....J L-....J L-....J L-....J L-....J L-....J 

I r-' r+-, r--, r--, r+-, r+-, 
I IAAI IBBI ICCI 1001 IEEI IFFI 
I L-....J L-....J L-....J L-....J L-....J L-....J 

I r" r-, r+, r+, r+, r-, 
I IAI IBI ICI 101 lEI IFI 
I L.....J L.....J L.....J L.....J L.....J L.....J 

L€ 

In this case partition with axis reduces the number of rows. Partition along the 
last axis of a matrix gives a matrix of vectors with a reduced number of 
columns: 
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1 1 3 3 7 c[2]6 5p'ASCDE' 
AB CD E 
AB CD E 
AB CD E 
AB CD E 
AB CD E 
AB CD E 

As usual, if no axis qualifier is present, the default is the last axis. In all cases 
the shape of the left argument must match the dimension along which the parti
tion is to occur. 

1 1 3 3 7c2 3 5p'ASCDE' 
AB CD E 
AS CD E 
AB CD E 

AS CD E 
AB CD E 
AB CD E 

In the next example, the effect of two successive partitions is to reduce a 2x6x5 
array to a 2x4x3 array of vectors: 

2 2 3 3 4c[2]1 1 3 3 7c2 6 5p'ABCDE' 
AS CD E 
AB AS CD CD E E 
AS AS CD CD E E 
AB CD E 

AB 
AS AB 
AS AB 
AS 

CD 
CD CD 
CD CD 
CD 

E 
E E 
E E 
E 

Partition applies in the same way to numeric right arguments: 

1 2 2c[1]3 5pl15 
12345 
6 11 7 12 8 13 9 14 10 15 

Items in the left argument must be non-negative, otherwise a DOMAIN ERROR 
occurs. As with the vector case above items corresponding to 0 are not carried 
into the result, e.g. 

o 2 2c[1]3 5Pl15 
6 11 7 12 8 13 9 14 10 15 



1. Functions and Arrays in APL2 21 

illustration : Grouping like items 

VcV on an ordered vector V creates a vector of vectors each containing identical 
items: 

V+1 1 1 3 3 5 5 5 5 
DISPLAY VcV 

r+----------------------~ 

I r---, r+-. r+ I 
I 11111 13 31 15 5 5 51 
I L...----l L~---l L... I L€ ______________________ ~ 

illustration : Stem and Leaf Plot 

Partition provides the foundations of a "stem and leaf" plot, i.e. a pseudo bar 
chart in which the stems correspond to a range of values and the leaves on each 
stem are the (possibly rounded) numbers which fall into the corresponding 
range. Here is an example: 

R+?10p40 
R 

21 34 2 3 22 27 1 16 3 17 
.[lO](r.1xR)cR+R[4R] 

233 
16 17 
21 22 27 
34 

1.3 Selection 

The functions pick, first, index and without provide a variety of means of 
selecting items from arrays. 

1.3.1 Pick and Path 

The function pick reduces or "penetrates" depth in the sense of going through 
the levels of structure shown by the DISPLAY of an array. 
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V12+12(13(14 15))(16 17) 
DISPLAY V12 

r+------------------------~ 

I 
I 12 
I 
I 
I 

r> 
I 
I 13 
I 

r--------, 
114 15 I 
L~------.J 

L€ ______ ....I 

r> 
116 171 
~------.J 

L€ ________________________ ~ 

12 
2=>V12 

13 14 15 

APL2 IN DEPTH 

Pick is like indexing with penetration, that is depth reduction, and so faulty 
arguments result in INDEX ERRORs. 

A simple scalar is the only object whose depth is zero. 

(=1=>V12)(=2=>V12)(=3=>V12) 
o 2 1 

The left argument of pick is a "path" through a nested array. Items in a path 
should be read from left to right to correspond to penetration of the levels of 
structure of the object from the outside working in. 

2=>V12 
13 14 15 

2 2=>V12 
14 15 

14 

The left argument of pick may be a nested vector of depth not more than two, 
and further the shape of any item in the path must be equal to the rank of the 
array at that level. For matrices a nested item in a path is a vector of co
ordinates in an array, e.g. with M as defined at the start of the chapter: 

DISPLAY M11 
I > 

oj. r> I r > I 
I I CHARS I 11 2 3 4 I 
I I I L~ __ ~ 

I r+--, 
I oj.ABI 16 
I ICDI 
I L-.J 
L€ ________________ -...J 

the following are legitimate paths: 

(2 1)(1 2)=>M11 
B 

3 
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An empty vector in the path is necessary to penetrate a scalar level, e.g. with 

V+'ABC'(ct3) 

DISPLAY V 
r+·------------------~ 

1 r+--" r---------..., 

1 1 ABC 1 1 r+----, 
1 L-...J 1 11 2 31 
1 1 L~-.J 
1 L€ ______ ~ 
L€ ________________ ~ 

23 

the second item is doubly enclosed so 2 3:::>V is a RANK ERROR. In order to 
reach the 3 it is necessary to use 

2(tO)3:::>V 
3 

An empty vector used in this way can be thought of as a "level-breaker." In 
general it is not wise to mix vector notation and explicit enclosure in the same 
statement since an extra level of nesting may inadvertently be created. 

1.3.2 First 

First (t) is the monadic function which uses the same symbol as take but its 
semantics are quite different. First penetrates the first level of structure and 
produces the first item there, as opposed to indexing which does not penetrate. 
(This topic is covered in more detail in Chapter 4). 

V12+12(13(14 15»(16 17) 

tV12 
12 

t<PV12 
16 17 

(<PV12)[1] 
16 17 

DISPLAY (t<PV12) «<PV12)[1]) 
r+ 
1 r> , , 
1 116 171 1 r+----, 
1 ~-.J 1 116 171 
1 
1 
L€ 

2 3 
456 

1 ~-.J 
L€ 

M+2 3pt6 
MM+M (-M) 
tM 

tMM 
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If there is no item of V within the outermost level of structure, a so-called fill 
item is returned. This is basically a non-empty substitute item for an empty 
array with zeros where the type is numeric and blanks where the type is char
acter. 

DISPLAY tOp(S 'A')('BCD' 6) 

DISPLAY tOpe(S 'A')('BC' 6) 

I r--. 
I 10 I 
I L+---1 

r+----. 
I r+-. 
I I I 0 
I L--.I I 

I 
L€ ______ ~ 

L€ ________________ ~ 

This topic is covered in greater depth in Section 4.3. 

1.3.3 Indexing 

Two forms of indexing are available in APL2, bracket indexing and scatter 
indexing. The latter is sometimes informally known as "squad" indexing because 
of the shape of the symbol (squashed quad). With nested objects the principal 
difference between pick and indexing is that the former reduces depth 

2 

V12+12(13(14 15»(16 17) 
2=>V12 

13 14 15 
:2=>V12 

whereas the latter does not. 

2DV12 
13 14 1S 

:2DV12 
3 

The quantities V12[2] and 2DV12 are identical, and both are equivalent to 
e2=>V which suggests that e=> and [] can be thought of as pre- and post
brackets respectively. In structure terms indexing cross-sections arrays whereas 
pick selects items or subarrays from arrays. 

For all simple vectors V it follows from the floating scalar rule that V[ 1] and 
1 =>V are identical, that is there is no need to distinguish an item and the cell 
containing it. With nested arrays however this distinction becomes one of crucial 
importance. 
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1.3.3.1 Scatter Indexing 

This is a versatile facility which nevertheless requires some care in its handling. 
A basic requirement is that the shape of the left argument is equal to the rank 
of the right argument as in the following example: 

A+3 4P112 
A 

2 3 4 
5 6 7 8 
9 10 11 12 

3 20A 
10 

The left argument may be nested so that a 2 by 2 cross-section of A can be 
defined by e.g. 

(3 2)(2 3)OA 
10 11 

6 7 

The name "scatter indexing" derives from the fact that it is possible to consider 
the items of an argument such as ( 3 2) ( 2 3) as individual indices, and 
thereby select items one by one using the each operator. Although the discussion 
of operators is the subject of the next chapter, the importance of this case to the 
index function demands its mention here. An example of scatter indexing is 

(3 2)(2 3)O"c:A 
10 7 

Whereas the left argument of pick may be indefinitely nested, the depth of the 
left argument of index may not exceed two. Also it is not possible with either 
form of indexing to penetrate nested arrays using a single application of the 
index function, for example: 

r+ 
+ 
I 
I 
I 
I 
I 
I 
L~ 

M11+2 2p'CHARS'(14)(2 2p'ABCD') 16 
DISPLAY M11 

r----. r+ I 
ICHARSI 11 2 3 41 
I I i-. I 

r+-, 
+ABI 16 
ICDI 
L-J 

10M11 
CHARS 

:;1 10M11 
2 

Consider the following attempts to extract the character H from the matrix M11: 
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201 10M11 
RANK ERROR 

H 

201 10M11 
/\/\ 

20::>1 10M11 
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These show that repeated applications of indexing alone are not sufficient to 
extract a nested item. The cause of this apparent dilemma stems from the shape 
of the result of indexing. Informally the rule is 

the shape of the result is the catenation of the shapes of the indices. 

Formally for a rank two array M and valid I and J with either form of indexing, 
if 

R1+M[I;J] 
R2+(I J)OM 

then the shapes of the results are 

p R 1 ++ (p I) • ( p J) 
pR2 ++ (pI).(pJ) 

The following phrase selects two copies of the first row of M11, and then the 
second item within each of these: 

«1 1)2)OM11 
1 234 1 234 

With the shape rule in mind, observe the difference between 

DISPLAY «1 1)2)OM11 

r" 
1 r" I r" I 
1 11 2 3 41 11 2 3 41 
1 L... I L... I 

L€ 

and 

DISPLAY «1 1)(.2))OM11 

olo r· I 
1 11 2 3 41 
1 L... __ ---' 

1 r" I 
1 11 2 3 41 
1 L... __ ---' 
L€ ____ ---' 

The shape of the result of indexing can also be stated in a rank independent 
fashion. If R+( I J K) OA then 

Another rule concerning 0 is 
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the shape of the index must equal the rank of the array, 

or more exactly, for valid lOA 

(p,I) ++ ppA. 

Scatter indexing is related to bracket indexing by identities such as the fol
lowing: 

IOV ++ V[I] 
(I J)OM ++ M[I;J] 

Indexing is highly sensitive to depth and great care must be taken to distinguish 
situations such as the following: 

«(,I),(,J)OM) _ M[,I;,J] 
o 

«(,I) (,J)OM) _ M[,I;,J] 

1.3.3.2 Indexing with Axes 

Axis qualification may be applied to o. The axes not included in the axis spec
ification take on all possible values. Thus the second row of M11 in the previous 
section is 

20[1]M11 
AB 16 
CD 

and the second column is 

2D[2]M11 
1 2 3 Lf 16 

The first item in the second row can be found in either of two ways: 

102D[1]M11 
AB 
CD 

or more simply 

2 10M11 
AS 
CD 

The latter exemplifies the index rule given in the previous section. Since 0 iden
tifies items and not their contents it is not possible to reach the character 'B' in 
the matrix by indexing alone. In order to penetrate depth a depth-reducing 
function such as disclose or pick must be used, e.g. 
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1 20=>2 10M11 
B 

((2 1)(1 2»=>OM11 
B 

The axis qualifier may be a vector of integers corresponding to axes. If M is 
extended to three dimensions: 

DISPLAY M+M11.[.5]~M11 
rr+·------------------~ 

++ r· i 
I CHARS I 

r+-, 

r+ i 
11 2 341 L ___ ---' 

+AB I 16 
ICDI 
L-.J 

r+----, r+-, 
I CHARS I +ABI 
i ICDI 

L-.J 

r i 
11 2341 16 

I L-__ ---' 
LL€ __________________ ~ 

the following are valid index expressions: 

2 10 [1 3]M PI 2nd plane, 1st column over all rows 
CHARS 1 2 3 4 

2 10[3 2]M 
1 2 3 4 AB 

CD 

PI 2nd column, 1st row over all planes 

The following table of pairs of equivalent expressions should further clarify 
the comparison of bracket indexing with 0 indexing. 

S+25 
V+'ABCDEFGH' 
M+3 4P112 

(10)OS 
30V 

(c3 1 2)OV 
210M 

(2 1)(3 4)OM 
(2 1) 3 OM 

10 [1]M 
10[2]M 

(c2 1) O[1]M 
(c2 1)0[2]M 

S 
V[3] 
V[3 1 2] 
M[2;1] 
M[2 1;3 4] 
M[2 1;3] 
M[1;] 
M[;1] 
M[ 2 1;] 
M[; 2 1] 
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1.3.4 Index of 

The indexing functions applied to a vector take an index and select the matching 
data item. Index of does the opposite in the sense that it takes a data item and 
returns the index. If the data item is not found within the vector an integer one 
greater than the length of the vector is returned, and if the data item appears 
several times within the vector, the value returned is the index of the first occur
rence in the vector. 

The left argument of dyadic t can be thought of as an alphahet in which the 
items of the right argument have to be sought. If the items to be sought are 
non-scalar care has to be taken to ensure that they are suitably enclosed. The 
example below illustrates the distinction between seeking the character string 
, CHARS' and seeking the five individual characters 'C'.' H' • ' A' • 'R' • ' S' . 

(.M11)tc:'CHARS· 

(.M11)t'CHARS' 
5 5 555 

illustration: Character to Numeric Conversion 

Character data can be mapped into arbitrary numeric equivalents by defining a 
left argument for index of, thereby providing an elementary coding scheme. 

ALP+'ABCOEFGHIJK' 
ALPt'HAO' 

814 
'KJIHGFEOCBA't'HAD' 

4 11 8 

Exercises 1 d 

1. If E is (2 3 p t 6 ) 3 ' APL' give value, shape and depth for each of the fol
lowing (some of the expressions may return errors): 

a. E f. 1::>E k. E[1] 
b. tE g. 1 2::>E I. E[ 1 2] 
c. HE h. (c:1 2)::>E m. E[c:1 2] 
d. c:E i. (c:1 2)::>1::>E n. (E[ 1 2])[1] 
e. ::>E j. ::>c:E o. 10(c:1 2) OE 

2. If W+' ABC ' 'OEFG' what are 

a. Wt'ABC' e. Wtc:'XY' 
b. Wtc:'ABC' f. W t 'XY' , ABC ' 
c. Wt 'OEFG' g. Wtc:'XY' 'ABC' 
d. Wt 'XY' h. Wt(c:'XY')(c:'ABC')? 
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3. a. With 

M11+2 2p 'CHARS' (14) (2 2p'ABCD') 16 
K+,2 
L+,1 

determine which of the following expressions match 2 1 DM11: 

1. (2,1lDM11 
2. K L DM11 
3. (K,L)DM11 

b. What is the shape of each expression? 

APL2 IN DEPTH 

4. a. Which of the following expressions does not produce a RANK ERROR? 

1. 2DM11 

2. 1 2DM11 

3. 1 1 2DM11 

4. (12)DM11 

5. (1,1 2)DM11 

6. (1,(1 2))DM11 

7. (1,1,2)DM11 

b. Why is a RANK ERROR produced in the remaining cases? 

5. With 
expressions: 

M+3 4p 112 determine the value and shape of the following 

a. 2D [1]M 
b. 2D[2]M 
c. (c2 1lD[1]M 
d. (c21lD[2]M 

6. Given A+3 4 Sp 160 write expressions involving D to 

a. extract the second plane; 
b. extract the third column from each plane; 
c. extract the third column from the second plane; 
d. extract the item in the fourth row, third column, and second plane. 

7. a. Use partition to divide a sentence, e.g. 'SPARE ME A DIME', into a vector 
of words. 

b. Use partition to convert a character name matrix M (i.e. a matrix in which 
each row is a name, and the shorter names are padded on the right with blanks) 
into a vector of names, each with no trailing blanks. 

c. Give an expression which converts a vector such as 
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V+O 0 5 0 0 0 11 0 0 -2 0 16 2 0 

into 0 0 5 5 5 5 11 11 11 -2 -2 16 2 2 ,that is 0 is interpreted as 
"repeat the last non-zero integer." 

8. Write a function ORDINAL which will accept a positive integer and return the 
character string consisting of the integer followed by the appropriate ordinal 
representation. For example: 

ORDINAL 3 
3rd 

ORDINAL 21 
21st 
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1.3.5 Without 

The function without (VNA) provides another way of selecting data from a 
vector, this time by discarding unwanted items. For example: 

'HELLO'N'AEIOU' 
HLL 

Without returns all items of the vector (or scalar) left argument v which are not 
in the right argument A. The result is always a vector. 

A 

r&1 
I I 
LJ 

o 

T+'A'N'B' 
T 

DISPLAY T 

DISPLAY 'A'N'A' 

T;:'A' 

Special attention must be paid to nested arrays since without in its comparisons 
takes into consideration both the shape and structure of items. For example: 

K+'A' 'BC' 
DISPLAY KN'A' 

r'--"" 
I r---, 
I IBCI 
I L-J 
L..: __ ....I 

r" 
I r---, 
I A IBCI 
I - L-J L..: ___ ....I 

r+1 
IAI 
LJ 

DISPLAY KNc'BC' 
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r+ 
I r"" 
I IAI 
I L-J 

LE: 

r+ 
I r--, 
I IBCI 
I L-.J 
LE: 

r+ 
I r+, 
I IAI 
I L-J 

LE: 

r+ 
I I 
I A I 
I - I 
I I 
I LE: 
LE: 

r, 
IAI 
L-J 

r> 
I I 
I A I 
I - I 
I I 

L+ ( • 'A' ) 'BC' 
DISPLAY LN'A' 

r+--, 
IBCI 
L-.J 

DISPLAY LNc. 'A' 

DISPLAY LN'DE' 'A' 

r+--, 
IBCI 
L-.J 

H+' A' (c 'BC' ) 
DISPLAY HN'BC' 'DE' 

r+--, 
IBCI 
L-.J 

DISPLAY HN(c'BC') 'DE' 

DISPLAY HN(c'BC') 

r--, 
IBCI 
L-.J 

I LE: 
LE: 

DISPLAY HNcc'BC' 
r+, 
IAI 
L-J 

In summary, the items of the right argument of the function without must reflect 
the same structure (that is shape and depth) as the left argument if they are to 
be discarded in the result. 
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illustration : Deleting blanks 

v..,' 'deletes all blanks in a single string. 

illustration: Intersection of data Items 

The items common to two vectors are obtained by two successive applications of 
without, e.g. 

PCTR 

IUE 

A+'PICTURE' 
B+'AEIOU' 
A..,B 

1.4 Replacement 

Bracket indexing is the simplest means of replacing parts of APL arrays, but is 
restrictive in that it is only rectangular subarrays which can be updated. Selec
tive assignment allows much greater generality in updating parts of arrays. 

1.4.1 Vector Assignment 

Vector assignment allows the decomposition of the assignment target into com
ponents each of which can be assigned individually. The general structure of 
expressions using selective assignment is 

(list of names) + value(s) 

For example: 

1 
4 
7 

XYZ 

(A B)+(3 3pt9)('XYZ') 
A 
2 
5 
8 
B 

3 
6 
9 
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1.4.2 Selective Assignment 

One form of selective assignment has always been present in APL namely 
assignment by index: 

M+3 3p\9 
M[2;2 3]+100 
M 
2 3 

4 100 100 
7 8 9 

The ability to assign to just part of an array is greatly extended in APL2. The 
general structure of expressions using selective assignment is 

(selective expression) + value(s) 

The replacement takes place in two steps. The first step selects the items to be 
replaced and the second does the actual replacement. For example if M is a 
matrix 1 1 ~M selects the leading diagonal because the left argument of ~ asks 
for matching indices along both dimensions of M. 

M+3 3p\9 
( 1 1~M)+100 
M 

100 2 3 
4 100 6 
7 8 100 

illustration: Passing Multiple Arguments 

Vector assignment permits the passing of multiple (possibly heterogeneous) argu
ments as in the opening portion of the following function: 

[0] Z+ FN NDP;NAME;DEPT;PHONE 
[1] FlNDP: three item vector 
[ 2] FlNAME: employee name 
[3] FlDEPT: dept name 
[ 4] FI PHONE: phone n urn ber 
[5] (NAME DEPT PHONE)+NDP 

The following is a table of functions allowed in selective assignment: 
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£. enlist monadic only 
t first/take monadic and dyadic with/without axes 
.j. drop with/without axes 

<I> e reverse/rotate monadic and dyadic with/without axes 
ravel monadic with/without axes 

[] bracket indexing as in first-generation APL 
D index dyadic with/without axes 
is! transpose monadic and dyadic 
::J pick dyadic only 
p reshape dyadic only 

/ f \ \ derived functions with/without axes 

Some derived functions using the operator each are also allowed in selective 
assignment. 

The nature of the selective expression can be wide ranging. Suppose v is a 
vector of vectors nested to an indefinite depth, e.g. 

V12+(12,(13(14 15))(16 17) 

and assume that a dyadic function PATH has been written which returns the 
path in the vector right argument R which leads to the first occurrence of the 
scalar left argument L, e.g. 

14 PATH V12 
221 

The single item 14 in V12 may have its value changed by selective assignment 
thus 

«14 PATH V12)::JV12)+20 
V12 

12 13 20 15 16 17 

The discussion of how to write PATH as the inverse of pick is deferred until 
Section 5.4. 

illustration: Selective Assignment In Functions 

Finding a path to an item in a vector of vectors and simultaneously changing it 
can be achieved by 

[0] Z+L CHANGE R 
[ 1 ] A Find item L [ 1 ] in R and change it to L [ 2] 
[2] «L[1]PATH R)::JR)+L[2] 
[3] Z+R 

14 20 CHANGE V12 
12 13 20 15 16 17 

A variation which enables the two operations of finding and replacement to be 
performed in the same line is: 
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[OJ Z+L Change R 
[1J Z+tR((L[1JPATH R)~R)+L[2J 

14 20 Change V12 
12 13 20 15 16 17 

The idea is to return the first of R joined to an expression L [ 2 J which is as it 
were "en passant" assigned to part of R using selective assignment. The effect of 
right to left execution is that it is the updated R which is presented as the argu
ment to first. Programmers who find this degree of compression objectionable 
should nevertheless be able to recognize the intention of such code when reading, 
as opposed to writing, APL2. 

1.5 Restructuring 

The following functions restructure data: 

p (reshape) 
~ (transpose) 
€ (enlist) 

• (ravel) 
c (enclose) 

<I> e (rotate/reverse) 
~ ( disclose) 

- this section discusses a variety of techniques for doing so. 
When constructing a scalar from composite data use of the enclose function is 

probably the technique that comes most readily to mind. This is not however 
the only way in which data can be reconstructed into scalar form as the fol
lowing illustration shows: 

illustration : Scalarlzatlon 

The leading item in an array can be returned as a scalar, possibly enclosed, by 
applying (to)p, e.g. 

(to)p(23pt6)('ABCD') 
1 2 3 
456 

which has depth two and rank zero. Contrast this with t (first) which selects 
the leading item by removing a level of nesting if one exists: 

2 3 
456 

2 3 

t(23p16)('ABCD') 

pt(23p16)('ABCD') 

m ( 1 ~=A) / ' A+cA' makes A into a scalar if it is simple and non-scalar, other
wise it does nothing. It should not be used to define the result of a function 
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since if A has depth greater than one, the expression reduces to ItO which 
although valid does not return a value, so a function applied to it, e.g. pit 0, 
gives a VALUE ERROR. 

There are by contrast situations in which scalars are an embarrassment on 
account of the floating scalar rule, and it is desirable to eliminate the possibility 
that an array has empty shape. 

Illustration : Descalarlzation 

1/S makes S into a one-item vector if it is a scalar, otherwise does nothing. 
This can be useful in generalizing algorithms where scalar arguments would 
result in errors, e.g. routines which use c: [p pAJA to enclose an array A along its 
last axis: 

c:[ppAJA+2 2 3 2pt60 
2 3 4 5 6 

7 8 9 10 11 12 

13 14 15 16 17 18 
19 20 21 22 23 24 

However a scalar argument results in: 

c:[ppSJS+9 
AXIS ERROR 

c:[ppSJS+9 

" " 
which can be prevented by: 

c:[ppSJS+1/S+9 
9 

Sometimes it is desirable to increase minimum rank still further as the next illus
tration shows: 

Illustration: Increasing Rank 

[OJ Z+UPRANK R 
[1J Z+«-2rppR)t1 1.pR)pR 

transforms R into an array of rank at least two. It is most frequently used as 

[OJ Z+MATRIFY R 
[1J Z+(-2t1 1.pR)pR 

that is make a scalar into a IxI matrix, or a vector into a matrix with shape 
vector 1 • p v. 
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Yet another restructuring requirement is to create a new array with the shape of 
an old one. 

Illustration : Copying Structure 

A;J!!A is an all-zeros array of the same structure as A. 

A£ \ 0 is an all-zeros array with the same top-level structure as A, e.g. 

V12+12 (13 (1415» (1617> 

V12;J!!V12 
o 000 0 0 

V12£\0 
000 

The enlist function may appear in selective specification and so (£A 1 ) +A2 uses 
the data of A2 to respecify the values of A 1 whilst still retaining its structure. 

Combinations of functions and operators can be used in selective assignment 
as the next illustration shows. 

Illustration : Process numerics only in a mixed array 

The expression tOpcA returns the type of A and is discussed in detail in Section 
4.3. It copies the structure of A replacing numeric scalars with Os and character 
scalars with blanks. The following code fragment shows how it can be used in 
conjunction with selective assignment and reduction to perform actions on 
numeric items only. 

A+( 'XX' 1)( 'YY' 2) 
(I/£A)+1.1x(I+£0=tOpcA)/£A 
A 

XX 1.1 IT 2.2 

1.5.1 Formatting 

The function format gives an all character representation, either a vector or a 
matrix, of its right argument, and always returns a simple result. Here are some 
examples: 
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DISPLAY IV13+((2 2p'ABC')2(3 4)(5 6» 
r---------, 
+ AB 2 3 4 5 6 
I CA 

plV13 
2 19 

APL2 IN DEPTH 

D+T+IJ+'ASSETS - ',2.9E6,' EXPENSES - ·,2.1E6 
ASSETS - 2900000 EXPENSES - 2100000 

(pT)(pJ) 
38 23 

There are two forms of dyadic format which provide the user with very fine 
control of the data conversion and display. The first form is called "format by 
specification" in which the left argument may be either a scalar or vector of 
integers. If it is a single integer it defines the precision of the character represen
tation of all the numbers in the right argument. If it is a pair of integers, the 
first defines the total column field width for each column and the second defines 
the precision for each number. To achieve variation between columns a pair of 
integers can be provided for each column in the data right argument. For 
example: 

I+2.346 -5897.645 .01 
J+9 21I 
(p!)(pJ) 

4 36 
I 

2.346 -5897.645 0.01 0 
J 

2.35 -5897.65 .01 

J+6 2 9 1 0 2 5 31I 
(pI)(pJ) 

4 24 
J 

2.35 -5897.6 .01 .000 

0 

.00 

The second form of dyadic format is "format by example" or as it was ori
ginally called "picture format." A simple character vector left argument acts like 
a template or picture describing where the numeric data is to be placed when it 
is converted to its character representation. This character vector contains both 
character digits which determine the character representation of the numbers, 
and also "decorators" which are characters to be displayed in addition to the 
numbers. The character vector should be viewed as a set of fields, one for each 
column of the array right argument with each field containing character digits 
and possibly decorators. The fields are normally separated from each other by 
at least one blank character. 

The decorators may be 

simple - that is appearing in the formatted result exactly where placed in the 
character vector left argument; 
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controlled - that is the appearance in the formatted result depends upon the 
number being formatted, e.g. if it is positive or negative; or 

floating - position is controlled by the character digits in the associated field. 

Each of the ten digits, '0' through '9', has a distinct meaning in the left argu
ment. Full descriptions are given in the language reference manuals, however 
the following summary may be helpful: 

The digits '0','5','8' and '9' form a group. 

'0' means display all digits including zeros. 
'5' means remove leading/trailing zeros. 
'8' means pad with the default format control character (OFC[3J). 
'9' means pad with blanks. 

The following examples illustrate how these digits can be used to control the 
display: 

C+23.758 0 8653.2 

, OOOO.OO'i\lC 
0023.76 0000.00 8653.20 

, 5555.55'i\lC 
23.76 8653.2 

, 5550.55'i\lC 
23.76 0 8653.2 

, 5550.00'i\lC 
23.76 0.00 8653.20 

, 8880.00'i\lC 
**23.76 ***0.00 8653.20 

, 9990.00'i\lC 
0023.76 0.00 8653.20 

, 9990.55'i\lC 
0023.76 0 8653.2 

Next here is an example of a simple decorator I 

'I OOOO.OO'i\lC 
I 0023.761 0000.001 8653.20 

The digits '1','2','3' and '4' form a group which handle controlled and floating 
decorators. Decorators may appear either to the left or to the right of their 
number or to both left and right, in which case two digits from this group 
should be used which are interpreted left then right. The meanings of the digits 
are: 

'1' : apply a floating decorator to negative numbers only. 
'2' : apply a floating decorator to positive numbers only. 
'3' : apply a floating decorator to positive and negative numbers. 
'4' : cancel '1', '2' or '3' on the other side of the decimal. 

Here are some examples to highlight these differences: 
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D+-23.758 0 8653.2 
, $5,551.50CR'IID 

¢23.76CR .00 
, $5,552.50CR'IID 

8,653.20 

23.76 $.OOCR $8,653.20CR 
, $5,531.50CR'IID 

¢23.76CR $.00 $8,653.20 
, $5,531.40CR'IID 

$23.76CR $.OOCR $8,653.20CR 
, ¢5,514.50CR'IID 

$23.76CR .OOCR 8,653.20CR 

APL2 IN DEPTH 

The digits '6' and '1' deal with the special cases of display of dates and times: 

'0006/06/06 06:06'112000 01 01 12 30 
2000/01/01 12:30 

'0006/06/06 06:06'112000 01 01 12 30 
2000/01/01 12:30 

.. and of numbers in scientific notation: 

E+1753.4 -.0024 0 -284 
-1.70+-01'IIE 

1.75+ 03 -2.401'-03 0.00+ 00 -2.84+ 02 

The digit '6' marks the end of a field which is terminated by the immediately 
following decorator. The symbols, • - are not allowed as decorators in this 
context. 

In the example with digit '7' the symbol + has been used in place of the con
ventional symbol E. 

1.5.1.2 Default rules for mixed data type 

The display of arrays of mixed data type is related to the result of the 
monadic form of format. There is a default pattern whereby the alignment of 
each column is independent of the contents of other columns, viz.: 

1. If the column contains all character data, the column display is left aligned. 

2. If the column contains all numeric data, the column is aligned on the 
decimal point and the decimal digits are right aligned. 

3. If the column contains character data and numeric data, the column display 
is right aligned. 

4. If the column contains a complex number, the character data is right 
aligned with the imaginary value and the J symbols line up. (Complex 
numbers with D and R symbols are converted to J type numbers on 
display.) A blank is provided for strictly real numbers. Both the real and 
imaginary parts align on the decimal point. 

ww as defined below ... 
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W1+'ABC' 'DEF' 'GHI' 
W2+2345 233345 .2345 
W3+1.234 27 98765.43 
WW+3 3pW1.W2.W3 
WW 
ABC DEF 

2345 233345 
GHI 

0.2345 
1.234 27 98765.43 

... appears identical in its output display to iIIWW: 

iIIWW 
ABC ABC ABC 

2345 233345 0.2345 
1.234 27 98765.43 

However: 

WW:iIIWW 
o 

43 

The difference is that :ww is 2 while :iIIWW is 1. Since the result of format is 
always simple iliA provides a guaranteed means of denesting arrays. 

illustration: Convert an array of arbitrary rank Into a matrix 

o 1.0 -1 Uc:UPRANK A (see Section 1.5 for UPRANK) transforms any array A 
into a simple character matrix. 

1.5.2 Sorting 

Grade-up and grade-down may take a left argument provided that the right 
argument is a simple non-scalar character array. In this case the left argument 
defines an alphabet or collating sequence. Where the collating sequence is a 
simple vector, it defines "alphabetical order" in the normal usage of that term. 
For example: 



44 

COW 
BEE 
YAK 
CAT 
SOW 

M1q+5 3p'COWBEEYAKCATSOW' 
M1q 

'ABCEKOSTWY'4M1q 
2 q 5 3 

M1Q['ABCEKOSTWY'4M1q;] 
BEE 
CAT 
COW 
SOW 
YAK 
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The collating sequence may have rank greater than one, in which case it is the 
last axis which is the most significant. This means that if a rank two collating 
matrix is supplied as left argument, all characters in its first column precede any 
in the second column, all of which precede any in the third column and so on. 
Suppose a collating matrix COL SEQ is defined as 

BA 
YS 
oc 

D+COLSEQ+3 2p'BAYSOC' 

and used to order the rows of M1 Q. Look first at the initial characters of each 
row of M1 Q. Since C and S are absent from the first column of COL SEQ, CAT, 
COW and sow all follow BEE and YAK. The priority of BEE and YAK is judged 
by observing their second characters. A and E are both absent from the first 
column of COL SEQ, however A is present in the second column from which E is 
absent and so YAK precedes BEE. To order the other three rows observe that S 
precedes C in the second column of COL SEQ and so sow precedes both cow and 
CAT whose order is determined by the first column of COL SEQ in which 0 is 
present but A is not. 

YAK 
BEE 
SOW 
COW 
CAT 

M1Q[COLSEQ4M1Q;] 

The above sounds complicated but the rationale is made clear by considering the 
most commonly used rank two collating matrix which is 

abcdefghijklmnopqrstuvwxyz 
ABCDEFGHIJKLMNOPQRSTUVWXYZ 

This matrix represents two collating sequences, the major one along the last axis 
and the secondary one along the first axis so that all names beginning with the 
same latter are grouped together regardless of case. 



1. Functions and Arrays in APL2 45 

Illustrations : Alphabetic sorting of vectors and matrices 

The Atomic Vector is a system variable which contains the 256 EBCDIC code 
representations of the APL2 character set. Letters of the alphabet in the same 
case occur in natural order in OAV which leads to the following technique for 
sorting either vectors of words or matrices whose rows are words: 

V14+'SPARE' 'ME 'A' 'DIME' 
V14[OAV4V14 ] 

A DIME ME SPARE 

[0] Z+SORTC R 
[1] Z+R[OAV4R;] 

A 
DIME 
ME 
SPARE 

SORTC::>V14 

For a three-dimensional character array dyadic grade-up sorts the array by 
planes: 

SPARE 
ME 
A 
DIME 

NOT 
A 
CENT 

245 

NOT 
A 
CENT 

SPARE 
ME 
A 
DIME 

::>(::>V14)(M15+3 4p'NOT A CENT' ) 

pT+::>(::>V14)M15 

T[OAVU;; ] 

A related system variable OAF returns either the OAV character given the index 
or the index given the character, that is it is either OAV1R or OAV[R]. 
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There is a Default Collating Sequence DCS in the form of a rank three array 
which is provided in a workspace UTILITY distributed with IBM APL2s. This 
has the property that the letters of the alphabet occur in alternate case order, 
i.e. AaBb ... etc .. Its shape is 10 2 28 and its major diagonal plane is: 

DISPLAY 1 1 2~DCS 
r+ I 
~ ABCDEFGHIJKLMNOPQRSTUVWXYZOI 
I abcdefghijklmnopqrstuvwxyz I 
I I 

If DCS is used as the left argument of a grade function the right argument must 
be an array of rank two or above. Using DCS for ordering character data has 
the advantage that the same letters in different cases are grouped together as 
opposed to DAV ordering in which all the letters in one case precede any of the 
letters in another. Also numeric characters appear in numerical order rather 
than in character order as happens using DAV, that is • 9' precedes • 10' using 
DCS. 

When discussing numeric vectors, it avoids ambiguity to use the word 
"ranking" rather than "rank" to denote positions of items following either 
ascending or descending ordering. These rankings are given by 44 and U 
respectively: 

4412 67 43 28 9 
25431 

U12 67 43 28 9 
4 235 

When there are equal values in a vector .u. and 4' process the items in order of 
appearance from left to right within it: 

V+5 3 3 5 2 5 9 
UV 

4235167 
UV 

2 5 6 3 7 4 

This may not always be the desirable thing to do, so two alternative techniques 
are shown in the illustrations below: 

Illustrations: Averaging tied ran kings 

[0] Z+TUP R 
[1] Z+.5x(44R)+'4~R 

[0] Z+TDOWN R 
[1] Z+.5x(4'R)+"~R 

TUP V+5 3 3 5 2 5 9 
5 2.5 2.5 5 1 5 7 

TDOWN V 
3 5.5 5.5 3 7 3 1 
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Schoolmaster's Rank 

Each group of "students" with equal scores is given the highest rank available. 

[OJ Z+SCH R 
[1J Z+(~R\R)D4'R 

SCH V 
2 5 5 2 7 2 
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The combination of partition and grade allows a simple vector to be reorganized 
as a vector of vectors where the items within each vector correspond to the same 
integer in a grouping vector, and zero represents omission: 

GV+1 2 1 2 0 3 1 0 2 
R+'ABCDEFGHI' 
GV[4GVJ~R[4GVJ 

ACG BDI F 

1.6 Comparison and Inquiry 

The functions depth and find provide means for inquiry of nested arrays, while 
the match function provides a mechanism for their comparison. 

1.6.1 Depth 

Depth, the monadic function associated with the :: symbol, has already been 
encountered informally as the number of line crossings in the DISPLAY diagram 
required to reach the deepest part of an array. More formally the depth of an 
array is defined recursively as one more than the depth of its deepest item, and 
the depth of a scalar is zero. A simple array is defined as an array with the 
property that all its items are scalars, and hence it follows that the depth of a 
simple array is one. 

1.6.2 Match 

Match is the dyadic function associated with :: symbol. Its result is always a 
simple Boolean scalar which is 1 only if its arguments are equal in all respects, 
i.e. value, type, shape and depth. Here are some examples of similar objects 
which fail to match: 
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2 3:;3 2 
0 

" :;10 
0 

( 1 1p4):;1 1p4 
o 

(,/1 2):;cc1 2 
o 

(,/1 2):;1 2 
o 

and here is one which does match: 

(,/1 2):;c1 2 

APL2 IN DEPTH 

arguments differ only in ... 

value 

type 

rank 

depth 

rank and depth 

The match function differs from the scalar function equal which pervades struc
ture and does comparisons on simple scalar items. The match function by con
trast does a total comparison on all the attributes of its arguments, thus: 

(2 3)4=(2 3) 4 
1 1 

(2 3)4:;(2 3) 4 
1 

V+'THE' 'CAT' 
V[2]=c'CAT' 

1 1 1 
V[2]:;c'CAT' 

1 

Match can thus often be used to shorten comparisons as in the following illus
tration : 

illustration: Test for all Items In a vector the same 

V:; 1 <I> V 

is an alternative to 

A/V=1<1>V or VA.=1<1>V 

1.6.3 Find 

The membership function £ tests whether a set of items is contained within 
another set by reporting the presence or absence of each item of the left argu
ment in the right, e.g. 

2 4 7£16 
1 1 0 
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To determine if an entire array is present in another array requires the dyadic 
function find (~) which looks for occurrences of the entire array left argument in 
the array right argument. The result is a binary array whose shape is that of the 
right argument with 1 s indicating the beginning of occurrences of the left argu
ment. 

Illustration: Find all occurrences of one string within another 

'CAT'~'BATTY CATS SCATTER DUCATS' 
o 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 000 

Illustration: Delete Multiple Blanks 

V15 
NO ONE IS AT HOME 

(N' '~V15)/V15 

NO ONE IS AT HOME 

The next illustration shows how a matrix can be used as a left argument of ~: 

illustration : Pattern Matching 

Search for the 2 x 2 identity matrix in a pattern of bits: 

M16 
0 1 0 0 0 
1 0 1 0 0 1 
0 0 0 0 1 
1 0 0 0 
0 0 1 1 1 0 0 
1 1 1 0 1 1 0 
0 0 0 0 0 0 

0 1 0 
PAT 

1 0 
0 

PAT~M16 

0 0 o 0 0 0 0 
0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 

0 0 0 0 0 0 
0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 
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Exercises 1 e 

1. Are the following scalars simple? If not what is their depth? 

a. ( 10) p (3 4 5) b. (10)p(3 4 5)(6 7) 

2. a. Write an expression to delete leading, trailing, and multiple blanks simul
taneously from a simple character vector. 

b. Write an expression using without to remove any all-blank rows from a 
(possibly nested) matrix M. 

3. Given the following collating sequences: 

CS1+' ABCDEFabcdef' 
CS2+' AaBbCcDdEeFf' 
CS3+~' ABCDEF' 'abcdef' 

and the following matrix: 

CAB 
DAD 
BED 
Bed 
bed 
BAD 
ACE 
bad 
ace 
dad 

M17 

determine the results of the following expressions: 

a. M17[CS1.t.M17; ] b. M17[CS2.t.M17; ] c. M17 [CS3.t.M17; ] 

4. a. Use dyadic grade-up to write a function which puts the rows of a character 
matrix in alphabetical order. Distinguish two cases: 

(i) all upper case letters come before any lower case letter; 
(ii) all a's in any case come before any b's and so on. 

b. Extend your expression to remove duplicate rows. 

5. Predict the result of ' , !c where C is a character matrix. 

6. a. Generate the matrix of shape R whose top leftmost submatrix of shape L 
consists of 1 s and the remainder is os. 

b. Generalize this to the case where the window starts in row wand column c. 
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7. How would you find where dense points are located in a three dimensional bit 
array A where "dense" means there is a two by two by two cube of all 1'S, e.g. if 
A13 is 

0 0 0 
0 1 0 

0 1 
0 0 0 

0 1 0 
1 0 

0 0 
1 0 

0 0 

then the first plane of the result is 

0 0 0 0 0 
0 0 0 0 

0 0 0 0 
1 0 0 0 0 
0 0 0 0 0 

8. a. Write a function REPL which replaces each blank in a character array with 
the character '*'. Test that your function works with arguments of any rank 
(including 0). 

b. What changes would you make to create the function Repl which replaces 
every 0 in a simple (Le. non-nested) numeric array with the three characters 
'N/A' ? 
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Summary of Functions used in Chapter 1 

Section 1.1 

PROTO 

Exercises 1a 

DIS 
QUAD 

Exercises 1 b 

MONTH 
START_DAY 

Exercises 1d 

ORDINAL 

Section 1.4.2 

CHANGE 

Section 1.5 

UPRANK 
MATRIFY 

Section 1.5.2 

SORTC 
TUP 
TDOWN 
SCH 

Exercises 1e 

REPL 

prototype 

enhanced form of DISPLAY 
solution of quadratic equations 

calendar for month 
auxiliary function for calendar 

constructs ordinal numbers 

exchanges items in nested vector 

increases rank of array to at least two 
makes scalar or vector into matrix 

sorts character matrix 
tied upward rank 
tied downward rank 
schoolmaster's rank 

replaces items in character array 

APL2 IN DEPTH 



2 
Operators 

All programming languages contain a set of fundamental instructions to trans
form data which are collectively referred to as operations. In APL2 operations 
are subdivided into two categories, functions and operators. Data transforma
tion occurs directly through functions or indirectly through operators. The fol
lowing figure illustrates the relationship of functions and operators. 

APL 0rerations 

Functions Operators 
(ambi-valent) (monadic/dyadic) 

(PrimittVe/defin;d) ~itiVe/defined) 

~iP~ 
arguments 

(data)~ 
operands 

~ctionS/data) 

~ro~ 
a result a function 

(derived function) 

The role of operators is to modify functions before they are applied to data. 
Primitive operators are discussed in this chapter, and user-defined operators are 
introduced in Chapter 5. There are four symbols which are used to construct 
the primitive operators in APL2, namely / \ • .. ,and there are a total of 
eight essentially distinct operators which are given in the table below in which P 
and Q represent functions and V represents a scalar or vector. 
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P / ••• 
V / ••• 
P\ ••• 
V\ ••• 
• • 0 • P ••• 
• • P. Q ••• 
p" ••• 

• •• p" ••• 

Reduce 
Replicate 
Scan 
Expand 
Outer Product 
Inner Product 
Monadic Each 
Dyadic Each 

2.1 The Each Operator 

APL2 IN DEPTH 

The each operator is intimately connected with nested arrays. It allows func
tions to be applied item by item to their arguments which is what happens in 
any case with scalar functions, i.e. functions like +, f and 8. Each allows its 
function operands to be applied one level down in the structure of the array. 
Just as a function acts on data to produce further data called a result, so an 
operator acts on operands to produce a function called a derived function. 

2.1.1 Pervasiveness 

A pervasive function is one which penetrates the structure of its arguments 
and is applied to the simple scalars within it. All the scalar functions are perva-
sive, e.g. 

DISPLAY V21 
r 
I r> I r 
I 12 4 51 I ..... r I 
I L....---.J I 16 71 18 9 101 
I I L~--.J L.... I 

I L€ 
L€ 

DISPLAY 10+V21 
r 
I r> I r+ 
I 112 14 151 I r----, r> I 
I L.... I 116 171 118 19 201 
I I L....---.J L.... 

I L€ 
L€ 

The each operator causes its function operand to penetrate one level of struc
ture, and so all each-derived functions are pervasive through one level. 
Repeated applications of each are necessary to penetrate further levels of struc
ture: 
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V22+'ABCD' ('EFG' 'HIJKL') 
DISPLAY 3pV22 

r+--------------------------------~ 

I r+---, 
I I ABCD I 
I L--..J 

I 
I 

r+---------, 
I r+--, 
I IEFGI 
I~ 

r+---, 
IHIJKLI 

L€ _______ ---l 

r+---, 
I ABCD I 
L--..J 

L€ ________________________________ ~ 

DISPLAY 3p"V22 
r· 
I r+--, 
I IABCI 
I~ 

I 
I 

r+--------------------~ 

I r+--, 
I IEFGI 
I~ 

r+---, r+--, 
I HI JKL I I EFG I 
L..-_---J1 ~ L€ ____________________ ~ 

L€ ______________________________ ~ 

DISPLAY 3p" "V22 
r+--------------------------------------------~ 

I r+·------------------------~ 

I I r+--, r--' r+--, r+--, 
I I IAAAI IBBBI ICCCI 10001 
II~~~~ I L€ ________________________ ~ 

r· 
I r+--, r+--, 
I I EFG I I HIJ I 
I~~ L€ ___________ ..... 

L€ ____________________________________________ ~ 

There is a formal analogy between the identity 

S ++ cS 

for simple scalars and the identity 

(F R) ++ F"R 

which defines a pervasive function F, in the sense that after removing R and the 
parentheses there is a one-to-one correspondence between the symbol sets (s,c:) 
on the one hand and (F,") on the other. 

The each operator takes on its real significance when applied to non-pervasive 
functions such as 1 and <I> as the following examples show: 

1"1 234 
2 123 234 

<I>'APL' 'IS' 'GREAT' 
GREAT IS APL 

<I>"'APL' 'IS' 'GREAT' 
LPA SI TAERG 

V12+12(13(14 15))(16 17) 
3 20"cV12 

16 17 13 14 15 

Each is permitted in selective assignments, e.g. 
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2 

(","V12)+2 3 6 
V12 

3 14 15 6 17 

illustration: Multi-path selection (scatter picking) 

V12+12(13(14 15))(16 17) 
(2 2 1)(3 2)~"cV12 

14 17 

illustration : Frequency Distributions 

APL2 IN DEPTH 

Section 1.2.6 illustrated how to use partition to group like items. This technique 
can be developed to obtain a frequency distribution of a vector of integers: 

V+2 7 4 5 7 5 4 3 7 7 2 
p"VcV+V[4V] 

2 1 2 2 4 

illustration : Mid-points In Euclidean geometry 

Suppose 

(A B C D)+(O 0)(1 6)(5 4)(8 0) 

represent the co-ordinates of four Euclidean points and the function MIDPT is 

[0] Z+MIDPT R 
[1] Z+.5x+/R 

The mid-points of the sides of the quadrilateral ABeD are: 

MIDPT"(A B)(B C)(C D)(D A) 

2.1.2 Scalar Extension 

Scalar extension applies to the primitive scalar functions which means that if 
one of the arguments of a scalar dyadic function is a scalar, it is used as many 
times as necessary in order to apply the function once for each item in the other 
array argument. Thus the scalar 10 in the expression 1 Ox 15 is replicated five 
times to achieve the item by item multiplication. By enclosing one argument 
scalar extension of non-simple arguments becomes possible, e.g. 
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V21+(24 5)((6 7)(8 9 10)) 
DISPLAY (c1 3 5)+2 4 

r+----------------~ 

I r+---, r+---, 
I 13 5 71 15791 
I L...----l L~----l 
L€ ________________ ~ 

DISPLAY 1 3 5+c2 4 
r+------------------, 
I r+---, r+---, r+---, 
I 13 51 15 71 17 91 
I L...----l L~----l L...----l L€ __________________ ~ 
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These expressions can be represented by the following diagrams in which each 
rectangle or square represents a scalar: 

Pervasiveness of scalar functions means that each is not required to qualify + in 
the above expressions. 

Derived functions resulting from reduction are not pervasive, e.g. 

+/(1 3)(2 4) 

is equivalent to 1 3 + 2 4, that is 3 7, whereas 

+/""(1 3)(2 4) 

is the result of applying + I to each of 1 3 and 2 4, namely 4 6. In general if F 
is a scalar function the following are true: 

F/V ++ V[1] F V[2] F •.• 

F/-V ++ (F/V[1])(F/V[2]) ••• 
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Exercises 2a 

1. Given 

V23+('ABC')((\3)(23p'ABCD')) 
V24+(c'ABC')((\3)(23p'ABCD')) 

what are the DISPLAYed values of: 

a. pV23 d. pV24 
b. p"V23 e. p··V24 
c. p····V23 f. p····V24 

2. Evaluate the following: 

a. +/(3 4 5) 6 7 8 d. +/""(3 
b. +/(3 4 5)(6 7 8) e. +/""(3 
c. +/""3 4 5 6 7 8 
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4 5) 6 7 8 
4 5)(6 7 8) 

3. Given that V is a lower case name vector, ,e.g. 'dick' , anne' , replace the 
first item in each name with its corresponding capital letter? 

4. The expression (N+/VHN gives the N-period moving average of a vector V. 
Adapt this to obtain the weighted moving average of V given a vector of weights 
W which sum to 1, e.g. given weights .2 A A, the weighted moving average of 
2 8 5 6 3 1 is 5.6 6.0 4.6 2.8. 

5. Given the vector 

V25+'ABC' (\3)(\5) ('THIS' 'IS' 'A' 'TEST') 

identify the following rearrangements of V25 from the options given below. 

V1 
ABC 
1 2 3 
1 2 3 4 5 

THIS IS A TEST 

V2 
A 1 1 THIS 
B 2 2 IS 
C 3 3 A 

4 TEST 
5 
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V3 
ABC 2 3 2 3 4 5 T I A T 

H S E 
I S 
S T 

V4 
A 1 THIS 
B 2 2 IS 
C 3 3 A 

0 4 TEST 
0 5 

V5 
ABC 1 2 3 1 234 5 THIS 

IS 
A 
TEST 

V6 
A 1 THIS 
B 2 2 IS 
C 3 3 A 

4 TEST 
5 

1. V1 + a. ::>[1]V25 

2. V2 + b. ,[tOrV25 

3. V3 + c. ,[tOr"c:V25 

4. V4 + d. ,[tOr"V25 

5. V5 + e. ::>[1]"V25 

6. V6 + f. ,[to]V25 

g. ::>"V25 
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2.1.3 Each with non-pervasive Functions 

The effect of applying each to the function shape is discussed in some detail, fol
lowing which its application to index of and grade-up are described in illus
trations. 

With 2 5 as left argument and 3 4 as right argument the result of 2 Sp3 4 
is 

34343 
4 3 434 

APL2 however allows us to "scalarize" either or both arguments by enclosure, 
thereby increasing the possible interpretations of "reshape" for given left and 
right arguments by using the derived function p". Scalarizing 2 5 can be pic
tured structurally as 

25 3 

4 

i.e. (2 Sp3) (2 Sp4) which is given in APL2 by 

(c2 S)p"3 4 
3 3 3 3 3 4 4 4 4 4 
3 3 3 3 3 4 4 4 4 4 

Enclosure is thus a device allowing scalar extension in the first-generation 
APL fashion, viz: 

G3l2J 

and is therefore an appropriate way to solve the programming problem "Con
struct two 2 x 5 matrices one made up of 3s and the other of 4s." 

Scalarizing the 3 4 is pictured analogously as 
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i.e. (2p3 4) (Sp3 4) and is rendered by 

2 Sp"c:3 4 
3 4 3 4 3 4 3 

Next the items may be applied pairwise: 

which is eq uivalen t to (2 p 3 ) ( S p 4) and is given by 

2 Sp"3 4 
3 3 4 4 4 4 4 

illustration : Each with Index of 
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Obtaining the letter indices of two words using the same alphabet means that 
the alphabet must be scalarized: 

so enclose left: 

( c: • ABCDE' ) 1 " • BED • • AXE • 
2 S 4 1 6 S 

To obtain the letter indices of a word using two different alphabets it is the 
word which must be scalarized, so enclose right: 
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• ABCDE' • XYZ' \ "c' AXE' 
1 6 5 4 1 4 

illustration : Each with grade 

Two examples are given to deal with mUltiple words and multiple alphabets. 

One alphabet, two words: 

(c'ABC' ).···CAT· 'CAB' 
21323 1 

One word, two alphabets: 

'ABC' ·CBA·."c·CAB· 
2 3 1 1 3 2 
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Exercises 2b 

1. If W+' ABC' 'DEFG' what are 

a. 2 3p"W d. ( c: 2 3) p "W 

b. 2 3p "c:W e. ( c: 2 3) p .. c:W 

c. 2 3pc:"W f. 2 3p .... W 

2. If Y+'HIGH' 'AND' 'DRY' and 
ALF+' ABCDEFGHIJKLMNOPQRSTUVWXYZ' what are 

a. ALF.t.::>Y b. .t.ALF.t.::>Y c. .t. .. (c:ALF).t. .. y 

3. An experiment consists of rolling a die and counting the number of throws 
necessary to observe the first 6. Simulate the result of repeating the experiment 
three times. 

4. This exercise is about a titling function PRT3D for rank three arrays and pro
vides in its first line a practical demonstration of partial enclosure. Suppose 

A+100X12 
B+10X13 
C+14 
pA21+Ao.+Bo.+C 

234 

Titling consists of two parts per dimension, viz. a descriptor and a vector of 
individual headings. For example, for the array D the planes could be labelled 

AAA= 100. AAA= 200 

where the descriptor is AAA= and the headings are 100 and 200. The function 
PRT3D takes as a left argument a six item vector v comprising 
descriptor/headings for planes, rows and columns respectively. 

[OJ Z+L PRT3D R;PLA;ROW;COL 
[1J Z+c:[2 3JA 
[ 2 J Z+ ' '. [ 1 J .. , '. [ 2 J .. Z 
[3J PLA+L[1J."2::>L 
[4J ROW+','.L[3J.4::>L 
[5J COL+L[5J.6::>L 
[6J Z+( c:ROW).·· (c:COL). [1 J"Z 
[7J Z+PLA.[1.5JZ 
[8J Z+.[10JZ 
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TITLES+'AAA=' A 'BBB=' B 'CCC=' C 

TITLES PRT3D A21 
AAA= 100 

\ CCC= 2 3 4 
BBB= 

10 111 112 113 114 
20 121 122 123 124 
30 131 132 133 134 

AAA= 200 

\ CCC= 2 3 4 
BBB= 

10 211 212 213 214 
20 221 222 223 224 
30 231 232 233 234 

Problems: 

a. Study the function PRT3D and attach a short comment to each line. 

b. Fill in the following table for the value of the result variable Z following 
execution of the lines indicated: 

[1] 

[2] 
[6] 
[7] 
[8] 

p p 

c. In line PRT3D[ 3] why is the first item indexed (L [1]) but the second item 
picked (2::)L)? 

d. Suppose all the headings are to be character vectors, e.g. 

PLA1 PLA2 
ROW 1 ROW2 ROW3 
COL1 COL2 COL3 COL4 

What changes are needed in (i) TITLES? (ii) PRT3D? 

5. The Pascal Triangle of size N consists of the non-zero entries in the outer 
product (IN) •• ! IN. Write functions PASCAL and CENTER to achieve the fol
lowing displayed versions: 
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1 

1 
2 
3 
4 
5 
6 
7 
8 

PASCAL 8 

3 
6 4 1 
10 10 5 1 
15 20 15 6 
21 35 35 21 7 
28 56 70 56 28 

CENTER PASCAL 

1 1 
1 2 1 

133 1 
1 464 1 

1 5 10 10 5 1 
1 6 15 20 15 6 1 

7 21 35 35 21 7 

8 

8 

8 28 56 70 56 28 8 1 

65 
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2.1.4 Index with Each 

The basic structure for the index function is 

IOR 

APL2 IN DEPTH 

where R is a data array and I a set of selection indices. Compared with bracket 
indexing the index function has the advantage of requiring no semicolons. This 
allows a defined operation to select items via indexing from an array of arbi
trary rank. The length of the left argument must match the rank of the right, 
that is 

(p,I) ++ ppR 

The left argument of index may be an array of depth two or less. This permits 
multiple indices along each of the dimensions of R. Thus for a rank 2 array R 

(1 2)(3 4)DR 

is equivalent to R[ 1 2; 3 4]. In words this expression selects all the items 
from R which lie in rows one and two, and also in columns three and four. In 
conjunction with the each operator, the index function permits scatter indexing 
which is the process of selecting items at will from an array. With scatter 
indexing the sets of indices are regarded as separate and independent. For 
example to select just the item in the first row and second column and the item 
in the third row and fourth column, the same left argument is used as in the 
previous example but it is necessary to make the index function the operand of 
each with a scalarized right argument thus: 

(1 2)(3 4)O"cR 

Pictorially this can be shown: 

which is equivalent in bracket indexing to (R[ 1; 2] ) (R[ 3; 4]) . 

On the other hand to find the item in row 1 and column 2 of several matrices 
the index left argument must be scalarized in conjunction with the application of 
each. Pictorially the situation is 
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I 2 R 

s 

and the appropriate APL2 expression is: 

(c1 2)O"R S 

which is equivalent to (R[ 1 : 2 J ) (S[ 1 : 2 J). A depth-two index, e.g. 

(c(1 2)(3 4»O"R S 

is equivalent to: 

(R[1 2;3 4J)(S[1 2:3 4J) 

Now go one stage deeper. 

1 30"c'ABC' 
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means form a two-letter word from the first and third letters of the alphabet 
'ABC'. To form two words, say a one-letter word and a two-letter word, define 

[OJ Z+L SEL R 
[1J Z+LO"cR 

and again scalarize the alphabet but this time as right argument to the derived 
function SEL", e.g. 

(1(1 3»SEL"c'ABC' 
A AC 

To form two one-letter words requires an explicit use of ravel on account of 
the fact that enclosure of simple scalars does not increase depth. 

,"1 3 SEL'ABC' 
A C 

Axis specification may be applied to the index function, and the resulting con
struct 

LO[IJR 

is called index with axis. Here is an example: 
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DISPLAY M11 
r+ 

'" r" i r" i 
I I CHARS I 11 2 3 41 
I i i LN i 

I r+..., 
I "'ABI 16 
I ICDI 
I L...J 
Lc;: 

DISPLAY 2 2 10[1]"cM11 

r " 
I r r" r" 
I I r+-, I r+-, I r" i r" i 
I I "'ABI 16 I "'ABI 16 I I CHARS I 11 2 3 41 
I I ICDI I ICDI I i i LN i 

I I L...J I L...J Lc;: 

I Lc;: Lc;: 
Lc;: 

The axis qualifier can be thought of as an operator whose derived function is 
0[1 ]. 

For Z+LOR the following identity holds 

pZ ++ :;),/p"L 

and for Z+LO[I]R, pZ is the shape OfR with the Ith item replaced by :;),fp"L. 

2.2 Extensions to the Slash Operator 

A full discussion of how reduction, scan and inner and outer product have been 
refined to deal with nested arrays is given in Chapter 5. However two straight
forward extensions of reduction merit immediate attention. 

2.2.1 Replicate 

In APL2 the slash operator may take as its left operand either a rank one or 
zero data array, or any function producing such a result. With data V as the 
operand, the derived function v / is called replicate. This enhances what was 
previously called compression by allowing the data operand to consist of a 
simple scalar or vector of integers. When the operand is a vector of just zeros 
and ones it may still be called compression as in: 

1 0 1/'ABC' 
AC 
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With non-negative integers the vector operand acts as a mask on the data argu
ment, and the integer determines the number of times the matching data item is 
replicated. Thus: 

3 0 2/'ABC' 
AAACC 

Negative integers in the left argument result in the indicated number of fill items 
(see Section 1.3.2) being inserted in the designated position, e.g: 

1 -2 3 0 2/14 
100 2 2 244 

DISPLAY 0 -2 2 0 3/('A'S) 'A' 7 'B' 
r+·----------------------, 
1 r+--, r+--, 
1 1 01 1 01 A A B B B 
1 L+--' L+--' L€ ____________________ 

The relationship between the left operand L and the right argument R is either: 

1. L is a non-negative scalar in which case it applies to all the items of R, or 
2. the number of non-negative items of L must match the shape vector item of 

R corresponding to the dimension in which replication is to occur. Formally 
if L/[IJR is valid then the following identity holds: 

(+/-1~xL) ++ I~pR 

illustration : The conjunction IF 

Throughout the remainder of this book the function: 

[OJ Z+L IF R 
[1J Z+R/L 

will be used so that where there are branches in functions 

+L1 IF condition 

mirrors the English words "branch to L1 if ... " . 

illustration : Multiple copies of matrix rows 

Obtain one copy of the second row and two copies of the fifth row of a matrix. 

BOY 
EAT 
EAT 

M21+S 3p'ANDBOYCANDADEAT' 
o 1 0 0 2/[1JM21 
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It should be emphasized that the slash in replicate is a monadic operator 
symbol and so a vector V to its left is an operand and the combination VIis a 
derived function. This has a practical consequence which is illustrated by the 
following sequence: 

1 0 11' ABC' 
AC 

1 0 1/'ABC' 'DEF' 'GHI' 
ABC GHI 

1 0 1/'" ABC' 'DEF ' 'GHI ' 
AC DF GI 

(1 0 1)(1 1 0)(0 

DOMAIN ERROR 
(1 0 1)(1 1 0)(0 
A 

1 ) I" , ABC ' 'DEF' 'GHI ' 

1 ) I" , ABC ' 'DEF' 'GHI' 
A 

The DOMAIN ERROR occurs because the operator 1 is evaluated hefore the oper
ator each and the left operand of 1 must be simple. The intention was presum
ably to achieve 

(1 0 1/'ABC')(1 1 O/'DEF')(O 1 1/'GHI') 

using each. However in order to apply each simple vector to the corresponding 
component of the right argument, the operand has to be made into an argument 
by creating a defined function, e.g.: 

LO] Z+L COMPRESS R 
[1] Z"'L/R 

(1 0 1) (1 1 0) (0 1 1) COMPRESS" , ABC' 'DEF' 'GHI' 
AC DE HI 

In the special case however where the left operand L contains just one simple 
item the derived function LI is evaluated first and so each can be applied to it 
to give e.g. 

1/,,(\2)(\3) 
1 2 1 2 3 

o 2/,,( \3) (3+\3) 
13346 6 

When reduction is applied to non-scalar functions such as p and, the inter
mediate results in general possess structure and so must be enclosed to obtain 
the correct rank. For example 

p/2 3 

has the value 2p3, that is 3 3, but rank reduction demands that the final result 
is c3 3. Similarly 

,/2 3 



2. Operators 71 

results in c2 3. Thus both pi and .1 increase depth as the cost of reducing 
rank. Similar considerations apply to scan and expand. 

illustration : Avoiding Blanks in List Lengths 

( 10) s can sometimes be deceptive on account of their "invisibility" in output, 
for example 

p-(2 2p14)(3)(4 5 6 7) 
2 4 

One way of overcoming this by turning scalars into one-item vectors is: 

p-1/-(2 2p14)(3)(4 5 6 7) 

221 4 

2.2.2 Dyadic Reduction 

The derived function reduction has a dyadic form called nowise reduction 
S F I [ I ] R. s, which must be a scalar integer, defines a "window" of consec
utive items to which reduction applies. The window moves along axis lone 
position at a time until all items of R have been covered. For example, a vector 
of consecutive pairs of items is given by: 

2./14 
1 2 2 3 3 4 

The expression (14) • /"' C14 produces a vector of vectors containing the I, 2, 3 
and 4 tuples while 5. I 14 defines the prototype of 14. 

If the left argument L of nowise reduction applied to a vector is a negative 
integer the items within the window are reversed before reduction is applied, so 
that (-L) • IV is equivalent to <l>L. I<I>V. 

Illustration: Reversing scans 

+\ V can be reversed by -2 reduction, that is 

V :: -2-IO.+\V 

is true for all numeric vectors V. The analogous formula for reversing x\ is 

V :: -2t/O.x\V 

which is true for all numeric vectors V which do not contain a zero. In the 
binary domain =\ and ;t\ are reversed using the identities 

V :: -2=/1.=\V and V:: -2;tlo.;t\V 

A fuller account of scans can be found in Section 5.5.3. 
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Integers greater than 11 +pV in the left argument of nowise reduction result in a 
DOMAIN ERROR. The left argument may be zero, e.g. 

0./l4 

is a vector of five e lOS. This example demonstrates the consistency of APL2 in 
dealing with edge conditions by fulfilling the identity 

(S+pS F/V) ++ (1+pV) 

Note: O. IV may give a DOMAIN ERROR on some APL2 implementations. 

Illustration : Partitioning a Record Into Fields 

Suppose a record RC read from a file is 40 characters in length and contains 
four fields of lengths 10, 15, 8, and 7. The following expression uses nowise 
reduction to split RC into four fields: 

FW+10 15 8 7 
(FW/l pFW) eRC 

Exercises 2c 

l. Create a function Compress which is a modification of the function COM

PRESS in Section 2.2.1 and which accepts an axis specification as part of an 
argument, e.g.: 

M M1 
ABC PQR 
DEF STU 
GHI VWX 

( 1 0 1)1 Compress M 
ABC 
GHI 

(e(1 o 1)2) Compress"M M1 
AC PR 
DF SU 
GI VX 

2. What are the values of 

a. 2 - 11 0 5 2 1 2 6 b. -2-/10 5 2 12 6 

c. 2p/2 3 4 d. -2p/2 3 4? 

3. a. State in words the result of the expression ((2xpV)pO -1 )/V. (Consider 
as a test case V+(5 'A') (l3) 'B' 23}. 
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b. Write an expression which will replace each item in a vector V with its own 
prototype. (Hint - Use the COMPRESS function in Section 2.2.1). 

4. How many scans other than +\, x\, =\ and ~\ can you reverse using -2 
nowise reduction in the style of Section 2.2.2? 

5. If V is a simple vector and F is a primitive scalar dyadic function what does 
the following expression define : 

F/-(1pV)t-cV ? 

6. a. Write a recursive function DTB to delete trailing blanks (but no others) 
from a character vector. 

b. How else could this be could this be achieved in APL2? 

c. How would you use DTB to remove trailing blanks from every word in a 
vector of words vw? 

7. a. For a simple numeric vector V write an expression for the product of all 
consecutive pair-wise sums of items, e.g. if V is 15 the result is 3x5x7x9 = 
945. 

b. Describe the string 

E:3 1 4p-'ABC' 

in terms of just one primitive function or operator. 

8. Write a function FIND which behaves like ~ (see Section 1.6.3) except that it 
returns a 1 in the position corresponding to every matched character, e.g. 

'CAT' FIND 'BATTY CATS SCATTER DUCATS' 
o 0 0 0 0 0 1 1 1 000 1 1 1 0 0 0 0 0 0 1 1 1 0 

9. In the third illustration of Section 1.6.3 how would you amend the expression 
to find all occurrences of the pattern 

1 X 
X 1 

PAT 

where X stands for "don't care," that is the bit concerned may be either a 0 or a 
1? 
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Summary of Functions used in Chapter 2 

Section 2.1.1 

MIDPT 

Exercises 2b 

PRT3D 
PASCAL 
CENTER 

Section 2.1.4 

SEL 

Section 2.2.1 

IF 
COMPRESS 

Exercises 2c 

DTB 
FIND 

mid-points in Euclidean geometry 

titles three dimensional matrix 
Pascal's triangle 
centers rows of character matrix 

multiple scatter indexing 

conditional branching 
functional form of compress operator 

deletes trailing blanks 
enhancement of primitive function fmd 
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3 
Elementary Data Structuring 

The objective of this chapter is to demonstrate the effectiveness of APL2 in 
dealing with relatively straightforward commercial and financial programming 
situations based on real applications. There are two main sections each of which 
is given in the form of an extended illustration with narrative. The final exer
cises try to show how rapidly a reasonably substantial application can be built 
up from scratch. 

3.1 Example 1. Product Stocks 

This example is about stocks of five components X801 to X805 which are 
bought from three countries, JAPAN, TAIWAN and HONG KONG. The rele
vant stocks for each component are given below (JAPAN does not deal with 
X804 or X805 and HONG KONG does not deal with X805 or X802): 

JAPAN+45 75 15 
TAIWAN+35 75 15 45 95 
HONGKONG+35 0 55 15 

With such a data organization a variety of questions can be asked, e.g. what is 
the total number of JAPAN components? 

+/JAPAN 
135 

Each allows all countries to be processed simultaneously: 

+/"JAPAN TAIWAN HONGKONG 
135 265 105 

The total stock of components is 

+/~JAPAN TAIWAN HONGKONG 
505 

or if 

STOCKS+JAPAN TAIWAN HONGKONG 



76 

then 

STOCKS 
~5 75 15 35 75 15 ~5 95 35 0 55 15 

and 

+/"STOCKS 
135 265 105 

and 

+/~STOCKS 

505 
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To find the total stocks by components two options are available. Either country 
vector is padded out with zeros so that the component items are in matching 
positions: 

+/5t"STOCKS 
115 150 85 60 95 

or ;:,s are used to create a matrix within which the padding takes place automat
ically and then sum down the columns: 

+f;:,STOCKS 
115 150 85 60 95 

Now enter the costs of the various components ... 

COSTS+(39 19 29)(35 15 29 15 ~5)(25 15 19 12,5) 

Suppose X802 for JAPAN was in error. The X802 cost component for JAPAN 
is set to the correct value of 15 by: 

(1 2;:,COSTS)+15 
COSTS 

39 15 29 35 15 29 15 ~5 25 15 19 12,5 

The total cost of inventory by country is: 

COSTS+,x"STOCKS 
3315 7735 2107,S 

and the total cost of inventory is: 

+/~COSTSxSTOCKS 

13157,5 

By establishing the names of the countries as a variable .. : 

CNTRIES+'JAPAN' 'TAIWAN' 'HONGKONG' 

.. the cost of inventory for each country can be displayed as 

CNTRIES."COSTS+,x"STOCKS 
JAPAN 3315 TAIWAN 7735 HONGKONG 2107,S 

Suppose all prices are to be marked up by 80% : 
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COSTSx1.8 
70.2 27 52.2 63 27 52.2 27 81 45 27 34.2 22.5 

Each entry may have different markups: 

PRICES+COSTSx1.6 1.7 1.8 
PRICES 

62.4 24 46.4 59.5 25.5 49.3 25.5 76.5 45 27 34.2 22.5 

The resulting net markups for each country/component combination are: 

NETMU+STOCKSxPRICES-COSTS 
NETMU 

77 

1053 675 261 857.5 787.5 304.5 472.5 2992.5 700 0 836 150 

.. and the net markup for the entire stock is: 

+/E:NETMU 
9089.5 

The average percent markup is: 

L.5+100x(+/E:NETMU)++/E:COSTSxSTOCKS 
69 

.. and the biggest net markup in each country is given by: 

r/"NETMU 
1053 2992.5 836 

By establishing the component names as CNOS 

CNOS+' X801' 'X802' 'X803' 'X804' 'X805' 

the maxima may be stated by component name: 

CNOS[NETMU,"rrNETMU] 
X801 X805 X803 

Instead of viewing STOCKS as a vector of vectors: 

STOCKS 
45 75 15 35 75 15 45 95 35 0 55 15 

it may be viewed in tabular form: 

:>STOCKS 
45 75 15 0 0 
35 75 15 45 95 
35 0 55 15 0 

or ... 

:>[1]STOCKS 
45 35 35 
75 75 0 
15 15 55 

0 45 15 
0 95 0 

Note that missing fields are automatically filled with zeros. 



78 APL2 IN DEPTH 

The tabular representation of STOCKS may be prefaced by country labels: 

CNTRIES,::>STOCKS 
JAPAN 45 75 15 0 0 
TAIWAN 35 75 15 45 95 
HONGKONG 35 0 55 15 0 

... and column headings may be added: 

(' ',CNOS), [1 J' " [1 JCNTRIES,::>STOCKS 

JAPAN 
TAIWAN 
HONG KONG 

X801 X802 X803 X804 X805 

45 
35 
35 

75 
75 
o 

15 
15 
55 

o 
45 
15 

o 
95 
o 

So far all the titles have been added in interactive mode. It could be embedded 
in a function such as 

VZ+L TOPS R 
[1] Z+( , ',L),[1J' , , [1 JRV 

CNOS TOPS CNTRIES,::>STOCKS 

X801 X802 X803 X804 X805 

JAPAN 45 75 15 0 0 
TAIWAN 35 75 15 45 95 
HONGKONG 35 0 55 15 0 

Suppose the component names are too long to make the table look nice. One 
possibility would be to list the names vertically which leads to the following 
alternative presentation: 

(::>[1JCNOS)TOPS CNTRIES,::>STOCKS 

x X X X X 
8 8 8 8 8 
0 0 0 0 0 
1 2 3 4 5 

JAPAN 45 75 15 0 0 
TAIWAN 35 75 15 45 95 
HONGKONG 35 0 55 15 0 

Or perhaps there should be more spaces in the original report ... 

(6 OiliCNOS) TOPS CNTRIES,::>(c:6 0) iii "STOCKS 

X801 X802 X803 X804 X805 

JAPAN 45 75 15 
TAIWAN 35 75 15 45 95 
HONGKONG 35 0 55 15 



3. Elementary Data Structuring 

Because ID is used this version shows blanks for items which are not present. 

Summary reports are obtained by: 

'TOTAL INVENTORY'.+/~STOCKS 
TOTAL INVENTORY 505 

(::>CNTRIES) .+/'"STOCKS 
JAPAN 135 
TAIWAN 265 
HONGKONG 105 

(::>CNOS).+/::>[1]STOCKS 
X801 115 
X802 150 
X803 85 
X804 60 
X805 95 

To view all this information collectively use: 

A+(::>CNOS).+/::>[1]STOCKS 
B+(::>CNTRIES).+/::>STOCKS 
C+'TOTAL INVENTORY'.+/~STOCKS 
ABC 

JAPAN 
TAIWAN 

135 
265 

X801 115 
X802 150 
X803 85 
X804 60 
X805 95 

HONGKONG 105 

... or vertically: 

.[to]A 
X801 115 
X802 150 
X803 85 
X804 60 
X805 95 

JAPAN 135 
TAIWAN 265 
HONGKONG 105 

B C 

TOTAL INVENTORY 505 

TOTAL INVENTORY 505 

Finally for a full spreadsheet type of report: 

79 
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HEAD+CNOS.c'TOTS' 
BODY+CNTRIES.(~STOCKS).+/~STOCKS 

FEET+(c'TOTALS').(+/~[1]STOCKS).+/ESTOCKS 

HEAD TOPS BODY. [1]FEET 

X801 X802 X803 X804 X805 TOTS 

JAPAN 45 75 15 
15 
55 
85 

o 
45 
15 
60 

o 135 
95 265 
o 105 

95 505 

TAIWAN 35 75 
HONGKONG 35 0 
TOTALS 115 150 

pHEAD TOPS BODY.[1]FEET 
6 7 
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Typically this would be embodied in a function that allowed the report to be 
run repeatedly with only a change in STOCKS. 

[0] Z+HR REPORT R;HEAD CNTRIES FEET 
[ 1 ] ,.. HR z Two item vector of row and column titles 
[2] (HEAD CNTRIES)+HR 
[3] HEAD+(").HEAD.c'TOTS' 
[4] BODY+CNTRIES.(~R).+/~R 

[5] FEET+(c'TOTALS').(+/~[1]R).+/ER 

[6] Z+HEAD TOPS BODY.[1]FEET 

The above report is then produced by 

(CNOS CNTRIES)REPORT STOCKS 

Of course a good spreadsheet reporting system could have done as much up to 
this point, however with APL2 this is only a beginning. APL2 doesn't just 
format reports - it is a powerful general-purpose language which as well as 
doing the simple sums above could equally well have performed complex statis
tical functions tailored to the user's special needs. 

Exercises 3a 

1. For the example above find the average selling prices for each of the five 
components for two different definitions of "average" namely 

a. a simple average of the selling prices in countries which hold stocks of the 
component; 

b. an average weighted by quantities in stock. 

2. Order the components by decreasing profitability within each country. First 
obtain the answer as indices, then translate these into component names. 
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3. A Cash Register system 
Many cash registers not only print out the cost of each item but also the name 

of the item. In order to do this assume that the system has a STOCK database. 
Suppose each entry in this database consists of (inventory number) (product 
name) (unit amount)(cost per unit). For example: 

SCREWS+211 'THREADIES' 1000 1.98 
SPANNERS+312 'FLATONES' 1 1.09 
PLUGS+654 'LOTSAVOLTS' 2 1.55 
STOCK+SCREWS SPANNERS PLUGS 

Define a function RECEIPT which will accept a vector of inventory numbers 
and the name of the stock database, and produce a matrix listing of the product 
names, unit amounts and costs per unit that match the inventory numbers. 
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3.2 Example 2. Optimizing Rental Charges 

This is an example of a financial application using the ideas of probability and 
discounted cash flow. A business offers both lease and outright purchase 
options on its products, and requires to determine "multipliers" where a multi
plier is defined as 

outright purchase price 

monthly rental charge 

The customer's decision to buy or rent is determined by two factors, namely 
his perception of the lifetime of the product and his view of the discounted 
present value of future rental payments. These can be combined in a discounted 
cash flow calculation 

[0] Z+L PCENTFOR R 
[1] Z++/+(1+.01xL+12)o.*112xR 

which results in the total number of monthly rentals discounted at L% which 
will be paid over a period of R years. This is equivalent to the maximum 
number of monthly rentals which the rational customer would be prepared to 
pay for outright purchase. For example with cash discounted at 7%, the equiv
alent number of monthly rentals paid over four years at present values is given 
by 

2~7 PCENTFOR 4 
41.76 

For a given product at a given moment in time the perception of discount rate 
and lifetime varies over a range of existing and prospective customers, and for 
modelling purposes it is assumed that both can be described in terms of esti
mated frequency distributions. The structure of customer lifetime perceptions 
will also vary for different products according to their rate of depreciation, e.g. 
television sets wear out gradually, whereas software becomes obsolete in a more 
sudden fashion. 

On the financial side, discounted rates for the value of future money varies for 
different customers even at the same moment in time. 

Suppose that the vectors DRATE and LIFEX describe possible discount rates 
and lifetime expectancies, and that the vectors DLIST and LDIST represent the 
proportions of customers holding these beliefs. 

DRATE+7 9 11 13 
LIFEX+4 5 6 

DDIST+.2 .4 .3 .1 
LDIST+.25 .5 .25 

i.e. 20% of customers discount future money at 7%, 40% at 9% and so on, 
while 25% estimate product lifetime as four years, etc. 
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The joint distribution of the discount rate DRATE and the life expectancies 
LIFEX is the outer product 

2IDRATEo.PCENTFOR LIFEX 
41.76 50.50 58.65 
40.18 48.17 55.48 
38.69 45.99 52.54 
37.28 43.95 49.82 

and the matching joint distribution of expectancies is the outer product 

3IDDISTo.xLDIST 
.050 .100 .050 
.100 .200 .100 
.075 .150 .075 
.025 .050 .025 

Suppose now that the supplier ftxes the multiplier at 50 say. If all customers 
are assumed to behave rationally what proportion will opt for purchase? Call 
the two tables above MTAB and PTAB standing for multipliers table and pro
portions table respectively and deftne a function CUSPRO: 

MTAB+DRATEo.PCENTFOR LIFEX 
PTAB+DDISTo.xLDIST 

[OJ Z+L CUSPRO R;MTAB;PTAB 
[1 J AL: a 2 item vector - multipliers table and proportions table 
[2J AR: a multiplier 
[3] AZ: %opt to purchase 
[4J (MTAB PTAB)+L 
[5J Z++/(R<.MTAB)/.PTAB 

The above question for a multiplier of 50 is then answered by 

(MTAB PTAB) CUSPRO 50 
0.325 

Now extend this to a range of multipliers. 

(cMTAB PTAB) CUSPRO" 40 45 50 
0.9 0.7 0.325 

What if the distribution of customer lifetime perceptions varies according to 
whether the customer is a new or an existing renter? To accommodate this 
adjust LIFEX to include smaller lifetimes and LDIST to be a two-item vector 
where the ftrst item reflects the distribution of a new customer and the second 
item the distribution of an existing renter. 

Lifex+t6 
Ldist+(O 0 0 .25 .5 .25)(.1 .2 .3 .2 .2 0) 

The two outer products require adjustment, in particular the one which multi
plies the distributions since what is needed is two separate tables corresponding 
to each of the two discrete distribution items of Ldist: 
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Mtab+DRATEo.PCENTFOR Lifex 
Ptab+(cDDIST)o.x-Ldist 
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Since Ptab is now a vector comprising two items, each of them a table, it is the 
derived function COMPRESS- (see Section 2.2.1) which has to be applied to each 
of them, and similarly for ." and + / -. This requires that CUSPRO be rewritten 
as 

[OJ Z+L Cuspro R;Mtab;Ptab 
[1J (Mtab Ptab)+L 
[2J Z++/-(cR<.Mtab)COMPRESS-.-Ptab 

so that its result is now a two-item vector with each item corresponding to one 
of the customer classes, new or existing: 

(Mtab Ptab)Cuspro 50 
0.325 0.04 

To investigate a range of multipliers apply each as before: 

(cMtab Ptab)Cuspro"40 45 50 
0.9 0.32 0.7 0.18 0.325 0.04 

or if the result is required as a table: 

::>(cMtab Ptab)Cuspro-40 45 50 
0.9 0.32 
0.7 0.18 
0.325 0.04 

To recap so far, the above table contains the proportions of customers opting 
for purchase. The (implicit) row headers are the multipliers set by the supplier, 
and the columns relate to new and existing customers respectively. 

Given this information together with a forecast of the numbers of new and 
existing customers, the supplier may now calculate his expected revenues for dif
ferent multipliers. Suppose that he has done this and has produced a five-item 
forecast revenue vector REV: 

REV+3300 4000 5300 6400 7000 

(It is true that the forecast of numbers of new and existing customers is likely to 
depend on the multiplier but this complexity is ignored for the time being.) 

The supplier as well as his customers has a perception concerning the dis
counted value of money. How does this allow the supplier to maximize his 
revenue? The following function returns net present value: 

[OJ Z+L NPV R 
[1 J AL I discount rate as a percentage 
[2J ARI vector of amounts 
[3J Z+Rf(1+.01xL)*lPR+.R 

The value of a single sum discounted for different rates for one year is given 
by 

(c10 12)NPV 100 
90.909 89.286 
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and the outer product 

10 12°.NPV 100 200 300 
90.909 181.82 272.73 

gives the value of several sums discounted for one year at different rates. 
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For a given revenue estimate vector REV the supplier can now discount the 
first item over one year, the second over two years and so on to give: 

10 NPV REV 
3000 3305.8 3982 ~371.3 ~3~6.~ 

as the projected revenue discounted at 10%. 
Applying each to the revenue vector allows this calculation to be performed 

for several discount rates, e.g. 

+/-10 12 NPV-cREV 
19005 179~7 

returns the total revenues with discounting at 10% and 12% respectively. Now 
at last the supplier is in a position to examine simultaneously his returns under a 
variety of assumptions and to make what he believes to be an optimum decision 
in setting the multiplier. 

Exercises 3b 

1. Given MTAB and PTAB as defined above, estimate the value of the multiplier 
at which 50% of customers opt for purchase? (Hint: order the items in • PTAB 
according to the corresponding values in .MTAB.) 

2. Obtain a table of discount rates 10% and 12% versus several revenue 
projections, e.g. 

REV+3300 ~OOO 5300 6~00 7000 (as in the text above) 
REV1+5p3300 
REV2+3300x(1.05)*0.1~ 

3. The staff of a department starts a savings bank, and records the individual 
transactions of members in a numeric nested vector BANK which is structured 
hierarchically as follows: 

BANK 
- MEMBER RECORD 

- MONTH 
- TRANSACTIONS 

BANK is a vector of MEMBER RECORDS. A MEMBER RECORD is in turn a vector 
of MONTHS of positive or negative TRANSACTIONS where a deposit is indicated 
by a positive number and a withdrawal by a negative number. At the trans
action level a deposit is indicated by a positive number, and a withdrawal by a 
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negative number. A MONTH is a vector of transactions, a MEMBER RECORD is a 
vector of months, and BANK is a vector of member records. 

A typical instance of BANK after one such bank had been operating for two 
months with four members is 

BANK+((20 -5 10 -5)(4 -2 -7»((-10 25)(16 3» 
((5 -9 -2)(6 -3 -3»(25(10» 

Give APL2 expressions which answer the following for this or any similarly 
structured bank: 

a. How many members has the bank? 

b. For each member over the entire period, what are 
(i) his net deposits? 

(ii) his total deposits? 
(iii) his total withdrawals? 

c. What is each member's sequence of monthly balances over the period? 

d. What are the bank's net deposits by month over the period? 

e. What is the net amount on deposit with the bank at the end of the period? 

4. Last Trades. 
Consider the following portion of data from the stock exchange: 

MMM 3;25 95 
T 3;27 36.5 
GM 3:31 43 
MMM 3:33 42.75 
IBM 3:45 102.25 
IBM 3:57 102.125 
GM 4:02 43.125 
GM 4:04 43.375 
IBM 4:04 102.25 
T 4:05 36.75 
IBM 4:12 102.5 

Assume it is structured as a nested three column matrix STP in which each 
row represents a trade on the stock exchange, the first column is the trading 
symbol, the second the time of the trade and the third the trading price. 

Problems: 

a. Create a function LAST_TRADE to find the last trade of each stock. 

b. Modify the function to another function STK_LAST_TRADE which finds the 
last trade of a given stock. 
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c. Enhance the program to return a message if the stock is not traded. 

d. Modify LAST_TRADE to a function TIM_LAST_TRADE which returns the last 
trade of each stock after a given time. 
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Summary of Functions used in Chapter 3 

Section 3.1 
REPORT 

Exercises 3a 
RECEIPT 

Section 3.2 
PCENTFOR 
CUSPRO 
NPV 

Exercises 3b 

formatted report 

builds cash register receipt 

discounted cash flow calculation 
customer proportion opting to purchase 
net present value 

LAST_TRADE last trade of each stock 
STK_LAST_TRADE last trade of given stock 
TIM_LAST_TRADE last trade after given time 

APL2 IN DEPTH 



4 
Using Functions and Arrays 

Chapters I and 2 discussed functions and operators in relative isolation. Chap
ters 4 and 5 are about the interactions of various functions and operators and 
thus provide a study in greater depth of the features of APL2 which are most 
intimately connected with nested arrays and the associated operations of enclose, 
disclose and each. Although the basic concepts are few a new perspective is 
required in order to acquire fluency in application. There is an analogy to the 
mental leap needed to move from thinking in two dimensional geometry to 
thinking in three dimensions. Data objects in first-generation APL possess data 
and structure where structure is synonymous with shape. In APL2 structure is 
given the additional aspect of depth, thereby releasing the user from the shackles 
of rectangular data structure and thus making it possible to model data struc
tures of almost indefinite complexity. The price of the flexibility afforded by the 
combination of data, depth and shape is that the simultaneous control of all 
three is a skill which has to be consciously acquired through practice in order to 
exploit the great programming versatility which nested arrays afford. 

4.1 Cross-sections, Picking and Indexing 

The distinction between items on the one hand and cells on the other, that is 
objects containing items, is crucial to understanding nested arrays. In general, 
indexing creates cross-sections of arrays, and for a two-item vector v this can be 
pictured 
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DD 
V[1] V[2] 

whereas pick penetrates arrays, thereby reducing depth. 

DD 
1:>V 2:>V 

Thus if V is a vector, then contrary to what one might intuitively suppose, V[ 1 ] 

is not the first item of V, but rather it contains the first item of V. Enclosure 
thus provides a container for data and indexing selects from a rectangular array 
of containers. 

Disclose on the other hand removes a container, allowing functions to be per
formed on its contents. The following vector identity reinforces this point: 

V[l] :: cl:>V 

(cf. post- and pre-brackets in Section 1.3.3). For example suppose 

V+'GO' 'TO' 'BEO' 

2:> V is the two-item vector 'TO' whereas P [ V], or eq uivalen tly 2 0 V, is c 2:> V, 
that is the enclose of 'TO'. Thus 

V[2]::c'TO' 

(2:>V)::c'TO' 
o 

Also 

V[3]=c'BEO' 
111 

(3:>V)=c'BEO' 
10001 0 001 

The last expression answers the nine separate questions 

'B' = 'B' 'B' = 'E' 
'E'='B' 'E'='E' 
'O'='B' 'O'='E' 

'B' = '0' 
'E'='O' 
'0' = '0' 
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A visually similar relationship exists between the argument and result of an 
each-derived function. This may be expressed: 

ifF is a monadic/unction and Z+F"R where R is a vector then/or all valid I 

Z[lJ ++ cF~R[lJ 

The sequence "enclose-function-disclose" is of such frequent occurrence that the 
above statement will be called the "each rule." Since disclose is the inverse of 
enclose the above equivalence can be seen as a manifestation of the formula 
GFG-j which pervades mathematics, and linear algebra in particular. Z and R 
have the same shape, that is 

pZ ++ pR 

and the following identities also hold 

tF lOR 
F"R1 R2 

For dyadic F with 

Z+L F"R 

++ 

++ 

FtIDR 
(F R1) (F R2) 

the corresponding form of the each rule is 

Z[lJ ++ c(~L[lJ)F~R[lJ 

or equivalently 

lDZ ++ c(~lDL)F~lOR 

Here the disclose step is applied simultaneously to both arguments. The analo
gous identities are 

tlO.Z ++ (tID.L)FtID.R 
L1 L2 F"R1 R2 ++ (L1 F R1)(L2 F R2) 

Contrast this with the function pick for which the corresponding rules are 

The vector rules for L F" R are readily extendible to arrays of higher rank. 
Here are the considerations involved in applying the each rule to evaluate e.g. 

V41+((2 2)(3 1»p"«14)'ABC') 

Each argument of p" is a two-item vector, and so the each rule says that in 
order to obtain the leading item of the result vector 1 ~ must be applied to both 
arguments to obtain 2 2 on the left and (14) on the right. Now p is applied 
and the result enclosed and placed in its proper cell in the result. For the second 
item do the same with 2~ to give a result 
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DISPLAY V41 
r+'------, 
I r+--, r'" 
I 4-1 21 4-AI 
I 13 41 IBI 
I L...--l IC I 
I L...I 
LE:------' 

4.1.1 Each and Scalar Functions 

APL2 IN DEPTH 

Another way to view each is in terms of scalar functions where a scalar function 
is defined as one which is applied independently to each item in the case of a 
monadic function, or between corresponding items of the left and right argu
ments in the dyadic case. Thus for example + is a scalar function and 

123+456 

can be viewed as shorthand for 

(1+4) (2+5) (3+6) 

Regardless of whether or not F is scalar F" behaves like a scalar function one 
level down in the data structure of its arguments. 

Scalar function behavior also means that scalar extension applies. The two 
basic forms of scalar extension are illustrated by 

Example Scalar extension 
S F A 2 + 3 4 5 2 2 2+3 4 5 
A F S 1 2 3 + 10 1 2 3+10 10 10 

The following frequently occurring patterns arise on account of the fact that F" 

is a scalar function: 

S F" A B ++ (S F A)(S F B) 
A B F" S ++ (A F S)(B F S) 
A B F" C D ++ (A F C)(B F D) 

Another way to evaluate the vector V in the previous example is to observe that 

( (2 2) (3 1» p" (( 1 4 ) 'ABC') 

is equivalent to 

(2 2pl4) (3 1p'ABC') 

When F is itself a scalar function each has no role to play since F already 
penetrates all levels of structure down to the simple items. Thus 1 2+3 4 is 
identical to 1 2+" 3 4, whereas the following are not identical: 
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DISPLAY 1 2,3 4 

r+ I 
11 2 3 41 
L~ __ ---I 

DISPLAY 
r+-------, 
1 r+--, r+--, 
1 11 31 12 41 
1 L~~ ~~ 

LE:--------I 

2,"3 4 
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Scalar extension often comes about through the application of enclose, for 
example: 

(c3 1) p" «14) 'ABC') 

is equivalent to 

(3 1p14) (3 1p'ABC') 

Because the derived function F" behaves like a scalar function one level down, 
three patterns involving the explicit use of enclose tend to arise in expressions, 
namely: 

(cA) F" B 
A F" (cB) 

F" e[I] A 

The first two reflect the scalar-function-array and the array-function-scalar pat
terns of scalar extension. The third one typically creates a vector for which a 
function such as grade-up or + / is applied to each item. 

The depth function further emphasizes the difference between pick and 
indexing in that ::V[1] is two, and ::1::1V is one. Yet another way to look at 
this is to say that V can be viewed in either of two ways: 

(a) as the join of two depth two objects, or 
(b) as the enclosure of two depth one objects. 

A consequence of this is that care must be taken to distinguish "the first item of 
an array" from "the first cell of an array." The former implies depth-reduction, 
the latter not. 

Vector notation provides a mechanism for enclosure without explicit use of the 
enclose function as in 

'ABC' 'XYZ'.t.··, CAT' 'AXE' 
21321 3 

Here L [ 1] is the scalar e ' ABC " R [ 1] is the scalar e' CAT', so the dyadic 
form of the each rule predicts that Z [ 1 ] is e' ABC' .t. 'CAT' . 
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4,2 Some Illustrations using Nested Arrays 

Sometimes algorithms carry over without change from the non-nested case, e.g. 
( (DOC 1 D) = 1 pDOC) /DOC removes duplicate words from a "document" DOC 
which is a vector of character vector "words." 

illustration : Word Search 

Test for occurrences of a word in a document. 

DOC+'THE ONLY THING TO FEAR IS FEAR ITSELF.' 
DC+ (' ';j!DOC) cDOC f'I partition string into words 
(c' FEAR' ) oe:DC f'I is the word present? 

(c'FEAR'):"DC 
00000 1 010 

illustration: Spell Check 

f'I a mask for its occurrences 

Find the words in TEXT which are not in DICT. Thus for spell checking, TEXT 
is the text as a vector of words, and DICT is the dictionary, also as a vector of 
words. 

DICT+'RECEIPT' 'THE' 'THEIR' 'THERE' 'WAS' 
TEXT+'THIER RECIEPT WAS THERE' 
TEXT+(' ';j!TEXT)cTEXT 
TEXT-DICT 

THIER RECIEPT 

illustration: Enlarging a List of Words 

Let LIST be an existing vector of words, for example 

LIST+(' ';j!LIST)cLIST+'BOOK READ THE TO TOO' 

and 

TEXT+'TO' 'READ' 'THE' 'TWO' 'RED' 'BOOKS' 'TOO' 

Following 

LIST+LIST,TEXT-LIST 

LIST is updated with the words of TEXT not previously in LIST. 



4. Using Functions and Arrays 95 

Illustration: Vector Merge 

Merge two vectors in the sense of taking one item alternately from each. For 
example: 

V42+'PETER ' 'PAUL ' 'MARY , 
V43+'AND' 'AND' 'BROWN' 
£V42."V43 

PETER AND PAUL AND MARY BROWN 

Illustration: Random Sentence Building 

Given a vector of subjects, a vector of verbs and a vector of nouns, the following 
function will generate random sentences. 

[OJ Z+SENTENCE SVN 
[ 1 J R SN : a three item vector of vectors 
[ 2 J R Z : a random sentence consisting of subject, verb and noun 
[3J Z+(?p"SVN)::>"SVN 

For example, with 

SUBJECTS+'RAY' 'NORMAN' 'JO' 'JEAN' 'DAVID' 
VERBS+'EATS' 'LIKES' 'DISLIKES' 'ENJOYS' 
NOUNS+'FISH' 'OATMEAL' 'APPLES' 'OLIVES' 'SPINACH' 

SENTENCE SUBJECTS VERBS NOUNS 

might produce 

JO LIKES OLIVES 

A common problem when using each in APL2 programming is ensuring that 
corresponding encloses and discloses are matched correctly. Programming with 
nested arrays rapidly leads to the discovery that a tiny difference in code can 
make a large difference in result, and consequently it is important to recognize 
differences between similar but subtly different expressions. The following exer
cises emphasize this point, and the solutions illustrate the extra complexity 
which arises when enclosure and each are used together. 

Exercises 4a 

1. Suppose V is the vector 4 5 6. Consider the following set of eight some
what similar expressions all of which are variations on the theme 

2 3pV 
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Some are meaningful, some are not. Evaluate those which are and predict the 
nature of the error in the case of those which are not. 

a. 2 3pcV e. (c2 3)pV 
b. 2 3p .. cV f. (c2 3)pcV 
c. 2 3p"V g. (c2 3)p"V 
d. 2 3pc"V h. (c2 3) p "cV? 

A detailed discussion of this exercise is given in Appendix A. 

2. Here are some similar variations on the theme ' AB' , 'CDE'. What is the 
result of executing the following: 

a. 'AB',c'CDE' e. (c'AB'),c'CDE' 
b. 'AB' , .. c'CDE' f. (c'AB'), .. c'CDE' 
c. 'AB' , .. , CD' g. 'AB' , .... 'CDE' 
d. ' AB' ,c" , CDE ' h. ' AB' , .. " c 'CDE' ? 

3. a. How would you sort a vector of codes each of which is a mixture of 
numerics and alphabetics, e.g. A9, B12, B9, b9, B10, ... ? Distinguish two 
cases: 

(i) all upper case letters come before any lower case letter; 
(ii) all a's in any case come before any b's and so on. 

4. Use OAF to construct the "alphabet" 'AaBbCc ••• '. (see Section 1.5.2 for 
a description of OAF.) 

5. If V1 is a vector of words, write an expression which returns a 1 to indicate 
the occurrence of any of the words in V1 as consecutive characters in a char
acter vector V2. 

6. Write an expression which returns the index of every occurrence of 'AB*c' in 
a character string V where 

a. * represents any single character; 
b. * represents any character string of arbitrary length including zero, which 

does not contain a further' C' . 

7. Word Analysis 
Suppose you have a variable representing textual data as a simple character 

vector, ( e.g. GETTYSBURG representing the Gettysburg address). 

a. How many words does it contain? 

b. How many distinct words does it contain (remember to remove punctu
ation and to change upper case letters to lower case at the start of sen
tences)? 
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c. How many occurrences are there of each of these distinct words, that is 
obtain a concordance of the data with the words sorted in order of fre
quency of occurrence. 

8. What does the following expression do 

given that v is a vector of words? 
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4.2.1 Further Illustrations using Nested Arrays 

illustration : Catenation of Matrices 

A frequent programming task to which APL2 brings a new way of thinking is 
that of adjoining two matrices of unequal dimensions, e.g. 

DISPLAY"LEFT RIGHT 
r--' r> I 
HIPI "'DICK I 
ITOMI I ALBERTI 
I JO I .... 1 __ ---J 

L-...J 

Suppose LEFT and RIGHT are to be catenated along the first dimension. An 
APL2 style algorithm converts each matrix to a vector of rows, catenates them, 
and reconstitutes the result as a matrix. A function to do this is 

[0] 
[1] 

PIP 
TOM 
JO 
DICK 
ALBERT 

Z+L VCAT R 
Z+::o::o./c[2]"L R 

LEFT VCAT RIGHT 

A vertical catenation of matrices 

The two discloses in VCAT relate to two enclosures, one explicit, and the other 
implicit arising from • / which will be discussed in detail in Chapter 5. 

VCAT as given above requires that both arguments are matrices. If the func
tion is to work with vectors or scalars, c [2] must be generalized to 

[0] Z+PENCL R A descalarize and partial enclose 
[1] Z+c[ppR]R+1/R 

(1 /R makes R into a one-item vector if it is a scalar, otherwise does nothing - see 
Section 1.5.) Therefore rewrite VCAT as 

[0] Z+L Vcat R 
[1] Z+::o::o,fPENCL"L R 

PIP 
TOM 
JO 
3 

LEFT Vcat'3' 
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3 
4 

PIG 
SHEEP 

3 Vcat 4 

'PIG'Vcat'SHEEP' 

illustration: Partial Enclosure 
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If it is logical to think of a matrix as a vector of row vectors or as a vector of 
column vectors, then consider using c:[2JM and c[1 JM respectively. For 
example to transform a matrix M with a single 1 in each row, e.g. 

000 
100 0 
000 1 

into the column indices the ones by rows use 

(c:[2JM) t ··1 

314 

which is arguably more expressive of intention than the regularly used idioms 
from first-generation APL 

or even the APL2 idiom 

Mf. t 1 

and 1++/A\M;I!1 

where f is any dyadic function. This is discussed in detail in Section 5.5.6. 

illustration: Find the co-ordinates of the 1s in a binary matrix 

Given 

M41 
1 100 
000 1 

000 

the co-ordinate pairs of the 1 s in M41 are 

(1.1> (1.2) (2.4) (3.1) 

One way to obtain these is to use T : 

[1] Z+ONES R 
[2] Z+c[1]1+(pR)T-1+(.R)/tx/pR 

of which a more elegant but less efficient form is: 
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[1J Z+Ones R 
[2J Z+1+(cpR)T--1+(,R)/lp,R 

~ONES M41 displays the co-ordinate pairs, one per row: 

ONES M41 
1 1 1 2 2 4 3 1 

If it is desired to retain the row structure in the solution each row of M should be 
thought of separately as a compression vector on 14, so following the reasoning 
of Section 2.1 14 should be scalarized as indicated by the following diagram: 

and the function COMPRESS 

[OJ Z+L COMPRESS R 
[1J Z+L/R 

used to give 

DISPLAY CI+(c[2JM41 ) COMPRESS ""C14 
r> 
1 r--' ,-, ,-, 
1 11 21 141 111 
1 1-.----1 I-.J I-.J 
L£ ______ ---' 

Next each row number is joined with its own set of indices using the function 
""" , " 

which is achieved by the expression 
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DISPLAY( t3). ····CI 

r> 
1 r+>--------, 
1 1 r+---, r+---, 
1 1 11 1 1 11 21 
1 1 L-.---l L~---l 

1 LE:--------' 

r+----, 
1 r+---, 
1 12 41 
I L~---l 

LE:----' 

r> 
1 r+---, 
1 13 1 1 
1 L~---l 

LE:-----' 
LE:------------------------------------~ 

Adding ".': 

,,"( t3). ····CI 

1 1 2 4 3 1 
1 2 

gives what is perhaps a more satisfactory display, or more generally 

"-(ttpM).--(c[2]M)COMPRESS- c t1+pM 
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To generalize this phrase, further account should be taken of the possibility of 
all-zero rows. Empty vectors must be eliminated from the result of COMPRESS

and matching row indices from the left argument of •.. - which leads to 

( (v 1M) It t pM) •.... ( (c [2 ]M) COMPRESS -q HpM) ~q 0 

illustration : Binary matrix as partitions of column indices 

The first row of the matrix M in the previous illustration: 

M41 
1 100 
000 1 
1 000 

partitions t 4 in to 3 4 corresponding to os and 1 2 corresponding to 1 s, the 
second row partitions t 4 into 1 2 3 and 4, and the third row partitions t 4 into 
2 3 4 and 1. The necessary masks can be described by 

(~M41)M41 

00111100 
1 0 000 1 

o 11 000 

and translated into indices by applying COMPRESS" with a further level of 
nesting in the left argument 
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DD 1 234 

DD -

DD -

r+------------------------------------------~ 

1 r------------------~ 
1 1 r---, r > i r+-------, 
1 1 13 41 11 2 31 12 3 41 
1 1 1-.---1 I-.---.J L~---.J 1 L£ ____________________ ~ 

r> 
1 r---, r+1 r'" 
1 11 21 141 11 1 
1 L~---I I-.J I-.J 
L£ ____________ ----I 

L£ __________________________________________ ~ 

Exercises 4b 

APL2 IN DEPTH 

1. Assume DTB is defined as in Exercise 2c6 to delete trailing blanks from a 
character vector. 

a. Use this function to write another function DBTM which converts a character 
name matrix (i.e. one in which each row is a name, and the shorter names are 
padded on the right with blanks) into a vector of names, each with no trailing 
blanks. 

b. Write a function Z+L INDEX R for which R is a simple character string, L is 
a name matrix, i.e. a matrix each of whose rows is a name, possibly padded with 
blanks, and Z is the indices of all rows of the matrix which contain R, if neces
sary padded with blanks. 

2. a. Write an expression which makes a character matrix consisting entirely of 
digits and spaces into a numeric matrix possibly padded with zeros. 

b. Generalize your expression to deal with arrays of any dimension. 
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4.3 Distinctions between Similar Primitives 

APL2 has several alternatives for selecting items from a nested array. The 
group of functions 

first, take, pick, disclose and index 

are discussed together since they have both semantic and graphical affinities 
with each other. In the context of this discussion, index applies equally to 
"squad" indexing and to bracket indexing. 

4.3.1 First and Take/Drop 

A significant attribute of functions is their effect with regard to depth. First is 
depth-reducing, take and drop are not. 

DISPLAY V+c[1]2 3P16 
r+----------------~ 

I r+--, r+--, r+--, 
I 11 41 12 51 13 61 
I L~---.J ~---.J ~---.J 
L£ ________________ ~ 

2 1 2 

DISPLAY-CtV)C1tV) 
r· 
I r+--, 
I 11 41 
I L~---.J 
L£ __ ~ 

=-CV)(tV)(1tV) 

Thus t and 1 t offer a straightforward choice between penetration (i.e. depth
reduction) and cross-sectioning (cf. Section 4.1 Pick and Indexing). For example 
t 1 8 is scalar 1, 1 t 1 8 is vector 1. Further, t will do a ravel if necessary and is 
thus guaranteed not to give LENGTH ERRORs such as arise from, say 

1t2 2p 14 

For all non-empty arrays A the following identity holds 

(tA) ++ (cT)~(T+(ppA)p1)tA 

where C p pA) p 1 should be considered as a path. The presence of the pick on the 
right hand side emphasizes the need to reduce depth by one in order to relate a 
first to a take. 

Take and drop are the subject of two identities: 

(pItA) ++ I I 
(pI~Al ++ orCpAl-I 
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where I is an index vector. These formalize the rank-preserving property of take 
and drop. 

Idioms involving first are more numerous than those involving take, for 
example 

A+2 5 2 3p160 

tA A first item of a simple array 
1 

t<!>.A A last item of a simple array 
60 

tpA A size of first dimension 
2 

t<!>pA A size of last dimension 
3 

Combining first and drop leads to some useful phrases, e.g. tHV selects the Ith 
item in vector V regardless of the setting of DIO. Hence 

Hcondition.j.<!> 'then clause' 'else ~lause' 

implements if-then-else (see Section 5.6.2 for another way of doing so), or more 
generally 

, , 'casel' 'case2 ' 

implements a case statement, for example 

COND2+1+COND1+1+CONDO+0 
.tCONDO.j.'O' '10' '20' 

o 
.tCOND1.j.' 0' '10' '20' 

10 
.tCOND2.j.'O' '10' '20' 

20 

'casen' 

t" penetrates but does not remove the outer level of structure. Instead it 
removes the levels below the outer one so that the identity 

pt"A ++ pA 

holds. For example 

DISPLAY V+c[1]2 3p16 
r" 
I r+--, r+--, r+--, 
I 11 41 12 51 13 61 
I L...---l L...---l L...---l L€ __________________ ~ 

1 

The rank of each item of an array is given by: 

t"p"p"A 
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For example: 

M42+2 2p(2 2p'ABC'(2 2p'X'))6(1 3pS)(l3) 
DISPLAY M42 

r+·----------------------~ 

"" r+-----------, 
""r--, 
I IABCI 
I~ 

r-, 
""XXI 
IXXI 
L......J I 

I 
I 
I 
I 

r+--, r+-, 
IABCI ""XXI 
~ IXXI 

L......J 
L£ __________ ...J 

6 

L£ ______________________ ~ 

2 0 
2 

t "p "p "M42 
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Another phrase involving t strips off one level of depth from within the outer
most layer: 

t./,"V 

for example 

V44+((2 2p'ABC')(2(3 4))(5 6)) 
DISPLAY V44 

r· 
I r--, 
I ""ABI 
I ICAI 
I L......J 

I 

r+---------, 
I r+--, 
I 2 13 41 
I L-.---l 
L£ ______ --I 

L£ ______________________ ~ 

DISPLAY ."V44 
r+-------------------------, 
I r~ 
I I ABCA I 
I L--J 

I 
I 

I r--' 
I 2 13 41 
I L-.---l 
L£ ______ --I 

r--, 
15 61 
L-.---l 

L£ ________________________ ~ 
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DISPLAY • / • ··V44 
I 
I r> 
I I ~---, 
I I A B C A 2 13 41 5 6 
I I - - L_---J 

I LE: 
LE: 

(see Section 5.5.2 for a detailed description of • /.) 

DISPLAY t./.-V44 
r+------------------~ 

I r+---, 
I ABC A 2 13 41 5 6 
I - - L----J 
LE:------------------~ 

pt. /. ··V44 
8 

Contrast this with E: which strips all levels of nesting: 

DISPLAY E:V44 
r > I 
IABCA 2 3 4 5 61 
L+ I 

pE:V44 
9 

4.3.2 First and Pick 

APL2 IN DEPTH 

The depth of the right argument of dyadic:;, (pick) is reduced by the number of 
items in its left argument or path. 

V+c[1]2 3p16 

DISPLAY-(V)(2:;,V)(2 1:;,V) 
r+ ~ 

I ~---, ~---, r+---, I 2 5 I 2 
I 1141 1251 1361 L----J 
I L----J L----J L----J 
LE:----------------~ 

210 

The above rule extends to the case of an empty path, in which case the result is 
simply the right argument, that is lois the left identity of pick. 

(10):;,V 
1 4 2 5 3 6 

1:;,V is equivalent to tV for any non-empty vector V. While both are depth
reducing, the former is valid only if V has at least one item, otherwise an INDEX 
ERROR occurs. First (t) by contrast never returns an INDEX ERROR. If there is 
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no first item, first supplies a fill item. In the first two examples below the fill 
item is a scalar, in the third example it is an empty vector. 

DISPLAY tOp2 3p5 

o 

DISPLAY tOp2 3p'ABC' 

DISPLAY tCl 0 

4.3.2.1 Type and Prototype 

The value of the fill item arising from applying t to an empty array depends on 
how the empty array was constructed in the first place. Although empty arrays 
are objects with structure but without data, they have to be created out of some 
data initially, and the originating data is reflected in the value of tAo For 
example: 

o 0 

000 

A+3 40p(c2p9J(c3p9J 
B+3 4 Op(c3p9J(c2p9J 

tA 

tB 

The above results are called the prototypes, which means literally the types of 
the firsts, of A and B. Only the leading item from which an array is created 
influences its prototype, e.g. the fact that the second item from which A above is 
created has shape 3 is not reflected in the prototype. 

The prototype of an empty array A is thus a non-empty array and its data 
does not reproduce the data which was used in constructing A in the first place, 
which cannot be recaptured by further processing. For example 

1 2 2HA 
o 0 0 0 
o 0 0 0 

contains no reference to 9, although the type and structure of A are inherited by 
the prototype. 

It is often desirable to construct an array of identical structure to a general 
array A with 0 replacing numbers, blank replacing characters, and t Os 
remaining unchanged. This is achieved by enveloping A in a further level of 
nesting and then deliberately constructing an empty array OpcA whose proto
type has the desired property. The result of the expression tOpcA is called the 
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type of A. In passing note the approximate graphical similarity between the word 
"type" and the APL character string "tOpe." Here is an example: 

V45+(137 'ABCDEF'(45 'G')) 
DISPLAY V45 

r+-------------------, 
1 
1 137 
1 

r' I r--, 
IABCDEFI 145 GI 
I L+----J L€ __________________ ~ 

DISPLAY tOpeV45 

1 r+'---, 
1 0 1 
1 L€ ________________ ~ 

illustration: Distinguishing character, numeric, etc. 

Defining 

[0] Z+TYPE R 
[1] Z+tOpeR 

the expression 2.l0 ' 'HTYPE A returns 0 for empty, 1 for character, 2 for 
numeric, 3 for mixed. 

The first of the ravel of the non-empty array TYPE A can now be defined as 
the prototype of A, thus extending the definition of prototype to non-empty 
arrays. 

Prototypes are most useful when dealing with objects which are uniform in 
structure, since in this case the structure of the leading item reflects the con
struction of all items. They are also used in situations where "proxy" data is 
needed by functions which either 

(1) enlarge structure (but not data) either at the extremities (take) or at an 
arbitrary point within the structure (expand and replicate); or 

(2) pad structure to rectangularity (disclose). 

The fill item is different in the two cases above, viz. in case (1) the prototype of 
the entire array is used, e.g. 

V46+«1 2)3)(4 5 6)(7 8) 
DISPLAY 4tV46 

1 r-r .... --------, 

1 1 r--, 
1 1 11 21 3 
1 1 1....---1 
1 L€ ___ ~ 

r> I r--, r' .. >-----, 
14561 17 81 1 r--, 
I....---l 1....---1 1 1 0 0 1 0 

11....---1 
L€ ___ ---' 

L€ ____________________________________ ~ 



4. Using Functions and Arrays 109 

DISPLAY 1 0 1\V46 
r+ 
I r+ r+ r+-----, r+--, 
I I r+--, I r+--, 14 5 61 17 81 
I I 11 21 3 I 10 01 0 L~--l L~---l 

I I ~---l I L~---l 

I Le Le 
Le 

DISPLAY 1 -1 1/V46 
r· 
I r+ r+ r+-----, r+--, 
I I r+--, I r+--, 14 5 61 17 81 
I I 11 21 3 I 10 01 0 L~--l L~---l 

I I ~---l I L~---l 

I Le Le 
Le 

In case (2) the prototypes of cross-sections of the array are used, that is t" Op .. v: 

2 
4 
7 

:::IV46 
300 
5 6 
8 0 

IBM manuals have defined prototype as tOpc:t, that is as TYPE first, 
however two of the characters in this phrase are redundant in that 

tOpc:tA ++ tOpA 

Informally c: (enclose) replaces the depth that t (first) removes. Further if A is 
empty, or even if only tA is empty, then the prototype is tAo 

To summarize, prototype is tOpA, reducing to tA if tA is empty. 

4.3.3 Pick and Disclose 

Both disclose (:::I) and pick (t) reduce the depth of an array, however pick is 
selective as well. In selecting an item pick may penetrate several levels of struc
ture. Pick always returns the selected item as it was nested in the structure. Dis
close may result in padding with fill items. Disclose returns all of the original 
data but it is transformed into an object with one less level of depth. It changes 
the structure of the original object, but requires uniformity of rank one level 
down, that is all items of p" p" A must be identical, subject to some flexibility on 
account of scalar extension. Thus the following is an error situation: 

A+3 2pt6 
V+'ABC' 
VA+V A 
:::IVA 

RANK ERROR 
:::IVA 
AA 
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If rank uniformity one level down does apply, the shape of :>A is the shape of A 
with r / p" A catenated to its right. Formally 

(p:>A) ++ (pA).r/"p"A 

When axis qualification is used with disclose used, it indicates where the nested 
shape values are to appear in the disclosed array. Here are some examples: 

2 

2 3 

2 
3 ~ 

3 2 

1 3 
2 ~ 
0 5 

p ( 1 2)(3 ~ 5) 

p:>(1 2)(3 ~ 5) 

:> ( 1 2)(3 ~ 5) 
0 
5 

p:>[1J(1 2)(3 ~ 5) 

:>[1](1 2)(3 ~ 5) 

f'I default axis for:> is 2 
f'I 3 comes from inner structure to second 

position of new structure 

f'I 3 comes from inner structure to first 
position of new structure 

The next example demonstrates the effect of using a vector as an axis qualifier: 

A+3 2pt6 
B+2 ~p10xt8 
AB+A B 
pAB 

2 
p"AB 

3 2 2 ~ 
DAB+:>AB 
pDAB 

2 3 ~ 
p:>[1 2JAB 

3 ~ 2 
p:> [1 3JAB 

3 2 ~ 

When V is a vector of vectors :>V is often useful for displaying V as a matrix, 
thereby make the relation between corresponding items clearer. 

Illustration : Converting vector of names to a matrix form 

While some functions such as grade-up require simple matrix arguments, names 
are often more easily entered as a vector of vectors, e.g. 

NAMEVV+'NORMAN' 'JEAN' 'JO' 'RAY' 

Disclose gets them into a matrix form: 
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4 6 

MNAMES+::>NAMEVV 
pMNAMES 

MNAMES 
NORMAN 
JEAN 
JO 
RAY 

4.3.4 First and Disclose 

Suppose 

A+c:?2 2p10 
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In this instance ::>A and tA have identical results but the routes by which they 
are reached are quite different. The effect of disclose, ::>, is to restructure the 
entire nested object by bringing the shape vector 2 2 from the inner structure to 
the outer structure. 

By contrast first (t) does a depth-reducing selection which penetrates one level 
of depth and selects the first object it finds there, in the case of A the 2x2 matrix 
within the nested scalar. 

Both functions are inverse to enclose, that is tc:A and ::>c:A are both equiv
alent to A. Enclose however is not the inverse of either, i.e. in general neither 
c:tA nor c:::>A is equivalent to A. 

4.3.5 Summary of Relationship between above Functions 

It is useful to summarize the relationships between these functions both in the 
form of a table: 

Depth- Fill/ Structural/ 
reducing? Index-err? Selection? 

::> Disclose Y F STR 
t Take N F SEL 
t First Y F SEL 
::> Pick Y I SEL 
D Index N I SEL 

and also in the form of a diagram in which a double line indicates that the two 
functions at its ends share two attributes from the table, a single line that they 
share just one. 
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I DISCLOSE (~) TAKE ('I') 

I FIRST ('I') I 

I PICK (~) INDEX (D) I 
I 

Both the table and the diagram show how first has the the greatest overall 
affinity with the others in the set. Also although pick and disclose share a 
common symbol they have only one of the three attributes in common. 

Exercises 4c 

1. Given 

A+2 3pt6 B+3 C+'APL' E+(cA).B.cC 

what are value, shape and depth for each of the following: 

a. OpE f. tE[2] 
b. tOpE g. ~E[2] 

c. tOpcE h. tOpE[2] 
d. tOp-1tE i. ~OpE[2] 

e. ~Op~E ? 

2. For any array A describe fully the differences between 

a.tA b.1tA c. 1~A d. A[1]. e.10A 

Which, if any, are the same if 

(i) A+ (1 2) (3 4) (ii) A+t 8 

3. Define D++( 1 2) 3' ABC'. 

a. What is (i) the type; (ii) the prototype of D ? 

b. What, if any, is the difference between the prototypes of D and <l>D ? 

c. What are (i) 5tD (ii) 51' "D (iii) 5t<l>D ? 
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d. What are (i) ~O (ii) ~"O (iii) ~ [1 ]0 ? 

4.a.Whatis~'THIS' 'IS' 100? 

b. Obtain the matrix below using ~ 

100 
1 2 0 
1 2 3 

c. Transform V47+( 'JACK' 10) ('PETER' 27) into 

JACK PETER 
10 27 

using only c: ~ and axis qualification. 
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5. If v is a non-empty vector, explain why the following two expressions which 
both extract the last item do not match: 

a. t<!lV b. -1 tV 

6. If Mis 2 3p 16 what is the difference between 

a. t[1]M b.1t[1]M c. tc:[1]M d. t"c:[1]M ? 

7. If M is a matrix, write the following expressions more briefly: 

a. 2 10"c:pM b. (c:2 1)OpM 

8. Make a name list (that is a vector of character vectors) of the names 
appearing below in ascending order of wealth: 

V48+('TRUMP' 8.1)('GETTY' 7.4) 

9. If A is an array, what single primitive function is equivalent to 

(c:T)~(T+(ppA)p1)tA ? 
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4.4 Empty Arrays and Fill Functions 

A language which admits empty arrays must address the problem of what each 
primitive function should do when presented with an empty array, that is an 
object with structure but no data. In such cases function execution in the ordi
nary sense of transforming data is not applicable and consequently each APL2 
interpreter must contain rules for providing the necessary padding characters. 
These rules are embodied in the so-called fill functions. Historically these have 
not been consistent across different APL2 interpreters. For scalar primitive 
functions F the result of F EA (EA = Empty Array) or EA 1 F EA2 reflects a 
combination of prototype, shape and fill function subject to rank and length 
conformance. Here are some examples on IBM mainframe APL2: 

DISPLAY fO 2p c t3 

r' 
<I> r--. r+----, 
I 10 0 01 10 0 01 
I 1-.----1 1-.---1 
L€ _______ ---' 

DISPLAY to 2pc'ABC' 
r+----------, 

<I> r+--. r· i 
I 10 0 01 10 0 01 
I 1-.----1 1-.---1 
L€ _______ ---' 

DISPLAY TfT+tO 2pc'ABC' 

r' 
<I> r--. r----, 
I 10001 10001 
I 1-.----1 L~---I 
L€ _______ ---' 

DISPLAY(O 2pct3)fO 2pc'ABC' 
r· 

<I> r~'--"" 
I 10 0 01 
I 1-.----1 

r----, 
10 0 01 
1-.---1 

L€ _______ ---' 

In APL2 the fill function of all scalar primitives with scalar arguments is a func
tion whose result is always zero even if the type of R is character. For non
simple arguments the fill function is applied to each item recursively until simple 
scalars are reached - this is consistent with the pervasive property of scalar 
primitive functions in preserving shape and depth in the absence of data. When 
one argument is scalar but non-empty and the other is empty, e.g. for 

2+0pcO 0 

the fill function is applied to the prototype of the non-empty argument as one 
argument and the empty argument as the other, so that the result of the above 
expression is 
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DISPLAY 2+0peO 0 
re----. 
I r+--, 
I 10 01 
I L~---.J 
L£ __ --I 
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The monadic and dyadic III functions are a special case since they are arith
metic but non-pervasive, and so what happens when each to them is applied is 
not dealt with by pervasion. Since F" is equivalent to defining a loop for F, it is 
desirable to maintain consistency of shape even when the loop is executed zero 
times, which is what happens when F" is applied to an empty array. The fill 
functions in APL2 for monadic and dyadic III are: 

[OJ Z+MFF R [OJ Z+L DFF R 
[1J Z+~tR [1J Z+((1.ptRJ.1.ptLJp~R 

For example: 

o 0 
o 0 
o 0 

tlll"Ope2 3pO 

B+13 2p10 
C+13 3p100 
BIIIC 

0.06595 -0.02702 
-0.05348 0.1279 

0.04424 -0.03799 
DISPLAY (OpeBJIII"OpeC 

re'--.., 
I r+--, 
I .0 01 
I 10 01 
I 10 01 
I ~---.J 
L£ __ ---' 

Non-scalar primitive functions have their results defined at the structure phase 
and so no separate fill functions are required, e.g. the results of 

re, 
101 
~J 

DISPLAY peO 3pO 

DISPLAY pe4 5p'ABCDE' 

are not affected by the emptiness or otherwise of whatever is to the right of c 

nor by its type, and likewise 

'ABC'leO 3pO 
4 
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depends only on whether a match is found for the enclosed scalar, and not on 
whether or not it is empty. 

4.4.1 Identity Items and Identity Functions 

There is an important distinction between the concept of identity items of scalar 
dyadic functions which satisfy 

A F lDl ... A 
lDl FA." A 

and identity functions which satisfy 

L F (lDF L) ... L 
(lDF R) FR." R 

4.4.1.1 Identity Items 

(Right identity item) 
(Left identity item) 

(Right identity function) 
(Left identity function) 

A full set of identity items is given in the following table 

+ x + L r * e 0 A V < S = 

0 0 1 1 0 M -M 1 none 1 0 0 1 1 
LR R LR R L LR LR R L LR LR L L LR 

~ > ~ .,., It/> 

1 0 0 none 
R R R 

where Land R stand for left and right and M is the largest number in the 
machine. These items are obtainable as F Il o. The reason is that 

(F/V) F (F/V1) ++ F/v.V1 

is a fundamental property of pervasive functions and so setting V1 to lO gives 

(F/V) F (F/lO) .+ F/V 

4.4.1.2 Identity and Inverse Functions 

Fulfllling the left-identity-function identity above for a function such as p 
requires a data-dependent argument, viz. 

(pR)pR ... R 

that is p is its own left identity function. Now take the function ~. What left 
argument makes 

L~R ... R ? 

The answer is l ppR so l pp is the identity function. A full list of identity func
tions is 
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Fn. Identity function L/R Restriction 

p pR L 
((-1.pR).0)pe((-1.pR).0)pR LR 1~ppR 

<Il (-1.pR)pO L 
e (HpR)pO L 
~ 1ppR L 
:;) 10 L 

• (ppR)pO L 
t pR L 

10 R 1=ppL 
(II (ltpR)o.=ltpR R 1~ppL 

Identity functions should not be confused with inverse functions which are 
defined by 

L LIF L F R ++ R 
(L F R) RIF R ++ L 

(Left inverse function) 
(Right inverse function) 

The only scalar dyadic functions which possess inverse functions are 

+ x t *- = 

Left I t * *- = ~ 
Right L.._-__ + ____ x ______ = __ ~--' 

Exercises 4d 

1. What are 

a. x/2 3 OpO 
b. x/2 0 3pO 
c. x/e2 0 3pO ? 

What difference does it make if the rightmost Os are replaced with 9S? 

2. What are 

a. 1'( 10)tOpe2 3pO 
b. t(ll"Ope2 3pO 
c. t(e3 4)p"Ope2 3pO ? 

3. What are 

a. p/2 3 OpO 
b. p/Ope2 3pO 
c. p/OpeVpO where V is any simple numeric vector? 
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4. What is the value of F/Opc2 3pO when F is: 

a. ~ b. ::> c. t d . .,. e. N f .• ? 

5. What are 

a. pt./Opc2 9pO 
b. p./Opc2 9 9pO 
c. pt./Opc2 9 9 9pO? 

What happens eventually as more 9S are added? 
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Summary of Functions used in Chapter 4 

Section 4.2 

SENTENCE 

Sec:tlon 4.2.1 

VCAT 
PENCL 
ONES 

Exerc:ises 4b 

DTBM 
INDEX 

Sec:tion 4.3.2.1 

TYPE 

builds a random sentence 

catenates matrices vertically 
descalarization with partial enclose 
obtains co-ordinates of 1 s in a binary matrix 

deletes trailing blanks in each row of a matrix 
indices of rows in matrix containing given string 

type of an APL array 

119 



5 
Using Operators 

5.1 The Role of Operators in APL2 

Although nested arrays are the most distinctive feature of APL2, operator 
extensions provide at least as great an advance. There are two aspects to oper
ator extension - first the provision of user-defined operators, and secondly the 
extension of existing operators to nested arrays and to user-defined functions 
and derived functions. These two features increase by a huge factor the expres
siveness of APL2 in describing programming ideas. 

In general if APL objects are the "nouns" of the language and functions the 
"verbs," then operators are the "adverbs." They direct how to apply or 
combine functions in ways which are common across a range of functions. 
From the earliest days of APL the adverbial aspect of functions was achieved 
by "embroidering" the function symbols with other symbols such as / and •. 
For example, +/V describes how to add the elements of the vector v, i.e. add 
"through" v, in the sense of inserting the function + into all the available spaces 
(one less than the number of elements in v) and evaluating the resulting 
expression. The insertion is a structural action and the consequent evaluation a 
functional one. After defining "reduce" to describe the adverbial concept of 
"through," it makes sense to talk about "multiply reduce," "divide reduce," 
and so on. 

5_1.2 User-defined Operators 

The mechanics of creating a defined operator are similar to those for defining a 
function. Four independent choices are made, viz: 
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its name 

the number of arguments 

the number of operands 

whether or not it has explicit result 

APL2 IN DEPTH 

As a general principle a user-defined operator should be constructed when 
several functions are handled in the same way. A simple example is COM which 
reverses or "commutes" the role of the left and right arguments. 

[0] Z+LCP COM)R 
[1] Z+R P L 

2 -COM 5 
3 

An operator has either one or two operands which are denoted here by P (left 
operand) and Q (right operand - if present). P COM is the derived function and 
Land R are its left and right arguments. The:; binding of the operator COM with 
the function minus is stronger than that between the derived function and the 
two arguments, and so the above expression should be read in the three 
"chunks" which are suggested by the spaces. 

Tracing function execution is another situation in which different dyadic func
tions are handled in the same way. The operator in this case is called SEE. 

[0] Z+LCP SEE)R 
[1] L 'f' R '=' Z+L P R 

-SEE is the same as - except that an explicit message is issued for every minus 
execution. 

-SEE/l4 
3 f 4 = -1 
2 f -1 = 3 
1 f 3 = -2 
-2 

Operators can be be used in conjunction, e.g. 

-SEE COM/l4 
4 f 3 = 1 
1 f 2 = -1 
-1 f 1 = -2 
-2 

Since -SEE is the same as minus except for messages it follows that -SEE COM 

is the same as -COM except for messages. The order of operators is important -
in the above traces f denotes - whereas in the next sequence f denotes -COM. 

-COM SEE/l4 
3 f 4 = 1 
2 f 1 = -1 

1 f -1 = -2 
-2 
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illustration : Moving functions along an axis 

Reduction applied to the non-commutative functions subtract and divide 
produces alternating sums and products respectively. This is counter-intuitive 
when viewed with eyes conditioned by ordinary arithmetic in that -/6 2 3 
looks as though it means 6-2-3, i.e. 1 rather than 7. The latter is indeed a rea
sonable variant of subtraction - call it subtraction "along" a vector - and the 
following operator describes recursively the process for a general scalar dyadic 
function P, which could be either primitive or user-defined: 

[OJ Z+(P ALONG)R 
[1J +L1 IF 1=p,R 
[2J +0 Z+((P ALONG)-1~R)Pt~R 
[3J L1:Z+tR 

(-ALONG) t4 

f ( fALONG) t 4 
24 

R branch if singleton or scalar 
R apply P once at right hand end of R 

This operator can be further generalized by specifying an axis Q as a second 
operand. 

[OJ Z+(P Along Q)R 
[1] +L1 IF 1=QDpR 
[2] +0 Z+((P Along Q)-1~[QJR)P 1t[QJ~R 
[3J L1:Z+1HQJR 

(-Along 2)2 3pt6 

The result of either function ALONG or Along, unlike that of reduce, has in 
general the same rank as its argument. 

The second program lines of the functions in the above illustration exhibit a 
technique which is widely used in the remainder of this book, particularly in 
recursive functions. It consists of using the characters +0 Z+... to compress 
assignment and branching into a single line. The effect of this is to make an 
intermediate nested object of depth one greater than the object of the assign
ment, and then force an implicit first for the branch. 
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Illustration: Table Building 

Another straightforward example of a simple operator is the outer product of a 
vector V with itself. 

[0] Z+(P TABLE)R 
[1] Z+Ro.P R 

xTABLE t12 

is thus the ordinary school multiplication table. 

A common property of the operators ALONG. TABLE, and COM is that they 
can be applied across a set of functions. If an operator were relevant to only one 
function, it would be preferable to write a user-defined function. 

Of the operands P and Q, either or both may be functions or arrays, but 
usually at least one is a function. The derived function then takes arguments L 

and R. If Q and R are both arrays as in the case of the function ALONG then 
parentheses may be necessary to show where Q stops and R begins. 

A monadic function has only a right argument. A monadic operator on the 
other hand has only a left operand. Non-ambiguity of syntax demands that 
operators follow the opposite rule to that for functions, that is they are executed 
from left to right. Thus in the expression 

-COM ALONG 1.t4 
2 

the operator COM is executed before the operator ALONG. More specifically the 
derived function -COM is constructed and then passed as an operand to ALONG 
to obtain the derived function (-COM) ALONG 1. Applying this derived func
tion to the right argument, the successive execution steps are: 

1(-COM)2 = 1 
1(-COM)3 = 2 
2(-COM)4 = 2 

giving 2 as the final answer. The above expression also raises the issue of where 
the right operand stops and the right argument begins, and under what condi
tions explicit parentheses are necessary. The precise rules for determining such 
matters are called the binding rules and they are discussed in the next Section. 
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5.2 Binding 

For expressions which contain only functions and variables the evaluation rule 
known as the "right-to-left evaluation" rule applies, viz: 

The rightmost function whose arguments are available is evaluated first. 

Including an operator in an expression requires further rules. The expression 

-COM ALONG 1. t 4 

discussed in the previous Section raised the issue of whether 1 is a right operand 
to ALONG or the left argument to the function catenate. At first glance the 
comma appears to represent the catenation 1. t4. However 1 is not a left 
argument to catenate because it has a higher priority as right operand to the 
operator ALONG. The 1 binds more strongly to the operator as an operand than 
it does as an argument to a function so that the expression is equivalent to 

(-COM ALONG 1) t4 

This example demonstrates that in addition to the right-to-left evaluation rule, a 
set of binding strengths between operators, functions and other syntactic symbols 
needs to be defined. Binding rules define how variables and symbols group for 
evaluation. For any three objects ABC the following binding table determines 
whether B associates with A or C, that is whether ABC means (A B) C or A 
(B C). 

Binding Strength Object 

(Strongest) 1. Bracket 
2. Assignment 
3. Operator 
4. Vector item 
5. Operator 
6. Function 
7. Function 

(Weakest) 8. Assignment 

Binds to-

the item on its left 
the name on its left 
its right operand 
the items on either side 
its left operand 
its left argument 
its right argument 
whatever is to the right 

As an example of how to use the table consider the problem of deciding whether 
the expression +. x fA means (+. x ) f A or +. ( x/> A. The binding between • 
and x (right operand binding) is stronger than that between x and f (left 
operand binding) and so the inner product is evaluated before the reduction. 
The entire expression thus means (+. x) fA and not +. (x/>A. The application 
of the binding rules to expressions containing two or more operators can be 
expressed more generally as 

Operators have long left scope and short right scope whereas functions have 
long right scope and short left scope. 
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illustration: Implications of Binding 

7 

a. Consider 

X+10 
5+X+2 

APL2 IN DEPTH 

The binding of x to + in the second line is stronger than that to +, otherwise the 
value of the result would have been 15. 

b. The expression 

2 4 6[2] 

results in a RANK ERROR since the bracket binds more strongly to 6 than does 6 
to the vector 2 4. To achieve what is presumably the desired indexing the 
binding strengths must be overruled with parentheses: 

(2 4 6)[2] 

c. Define 

[0] Z+(P RED Q)R 
[1] Z+P/[Q]R 

+RED 2 3 2pt6 
3 7 11 

is equivalent to 

(+RED 2)3 2pt6 
3 7 11 

since the binding of RED to its right operand 2 is stronger than the binding of 2 
as an item of the vector 2 3 2. 

Operators may include other operators in their definition, e.g. reduction from 
the left is given by 

[0] Z+(P LRED Q)R 
[1] Z+P COM/[Q]~R 

(-LRED 2)2 3pt6 
-4 -7 

LRED is similar to ALONG, but mimics reduction more closely than ALONG by 
reducing rank. Although functions derived from user-defined operators may be 
ambi-valent (see Section 5.3.2), operators themselves are not, so an attempt to 
use LRED monadically results in e.g.: 
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(-LREDl2 3p16 
SYNTAX ERROR 

(-LREDl2 3p16 
A A 

Illustration: Hexadecimal Arithmetic 
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The operator HEX transforms arithmetic functions into their equivalents for per
forming hexadecimal arithmetic. 

[OJ 
[1] 

Z+L(P HEXlR 
Z+DTH(HTD LlP HTD R 

FI Land R are character strings 
FI representing hex numbers 

The functions DTH and HTD convert decimal to hex and hex to decimal respec
tively. 

[OJ 
[1] 

Z+HTD R 
Z+161-1+HSTR1R 

FI R is a hex character vector 

[OJ 'i7Z+DTH R fI R is a numeric array 
[1J Z+HSTR[1+((L1+16s1ff/.Rlp16lTRJ 

where HSTR is the character string '0123456789ABCDEF'. Here are some 
examples: 

'A1'+HEX'4F' 
FO 

'A1'xHEX'4F' 
31AF 

+HEX/'F3' '8' '2' 
FD 

'12'+HEX"'F3' '8' FI 1 added to X'F3', 2 added to 8 
F4 A 

(c '12' l +HEX'" F3' '8' FI X'I2' added to both X'F3' and 8 
105 1A 

Comparison of the last two examples shows how enclose is necessary in order to 
have '12' interpreted as a single hex integer, with subsequent scalar expansion 
(see Section 2.1.2). This suggests that the operator HEX be extended to HEXE 
(standing for HEX each) thus: 

[OJ Z+L(P HEXElR 
[1J Z+DTH"(HTD"LlP HTD-R 

'A1' '12'+HEXE '4F' 'F3' 
FO 105 

(c'12'l+HEXE 'F3' '8' 
105 1A 
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illustration : An Operator for Padding Matrix Catenations 

This illustration shows how variations on text-joining with regard to axis and 
justification can conveniently be brought together by defining an operator. The 
technique can be compared with VCAT given in Section 4.2.1. 

[0] Z+L(P NEXT Q)R;T;U 
[1] (L R)+MATRIFY"L R 
[2] Z+Qx (pL H pR 
[3] T+Z+(pL)xU+NIQ 
[4] U+Z+UxpR 
[5] Z+(TtL),[P]UtR 

[0] Z+MATRIFY R 
[1] Z+(-2t1 1,pR)pR 

A ensure both arguments are matrices 
A Z is used as a local variable ... 
A ... to calculate left arguments for take ... 
A ... prior to catenation 

Neither operand of NEXT is a function, so effectively NEXT is a function with 
four arguments. The left operand P is the axis qualifier for catenation and the 
right operand Q is a code which determines in which direction (if any) to apply 
padding in order to make the smaller dimension match the larger. Its domain is 
-1 0 1; 1 means pad. or +, -1 means pad t or +, 0 means don't pad. A 
code of 0 in the pth. item of Q can give rise to potential LENGTH ERRORS. A 
few examples should make the operation clear. 

DISPLAY"M51 M52 
r· I r+--l 
.BREAD I .MAN I 
I FRUIT I ICANI 
I I IEATI 

L--J 

DISPLAY"(M51(1 NEXT(O 1»M52) (M51(1 NEXT(O -1»M52) 
r· I 
.BREADI 
I FRUIT I 
IMAN I 
ICAN I 
I EAT I 

I 

r· 

I • I 
.. BREAD I 
IFRUITI 
I MAN I 
I CAN I 
I EAT I 

r· 
• BREAD 
I FRUIT 
I 

I 
MAN I 
CAN I 
EAT I 

• MAN I 
I BREADCAN I 
I FRUITEAT I 
I 

DISPLAY"(M51(2 NEXT(1 0»M52) (M51(2 NEXT(-1 -1»M52) 

r • I 
.BREADMANI 
IFRUITCANI 
I EAT I 
I 

r· .. 
I BREAD 
I FRUIT 

I 
MAN I 
CAN I 
EAT I 

I 
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Exercises Sa 

1. The expression 

T/lpT+((N-1)p1)~2</V 

129 

in which V is a simple numeric vector and N a positive integer returns the indices 
in V of the starting points of all strictly increasing subsequences of length N, e.g. 

V+2 3 4 3 4 5 2 2 7 
N+2 
T/lpT+((N-1)p1l~2</V 

1 2 4 5 8 

Write an operator CONSEC which allows the determination of the equivalent 
information for 

a. strictly increasing sequences; 
b. strictly decreasing sequences; 
c. non-decreasing sequences; 
d. non-increasing sequences; 
e. sequences of equal values; 
f. sequences of values in which every item differs from its neighbor. 

2. a. Write an operator BASE which performs arithmetic functions P on scalar 
numeric integers which are to be interpreted as integers in base Q, e.g. 

16+BASE 7 23 
42 

1111+ BASE 2 11 
101 

b. How would you extend this to process integer arrays, so that you could for 
example divide the two by two array 

1111 110 
10010 100001 

by 11 in base 2. 

3. Describe the difference between 

[0] Z+L ROOT R 
[1] Z+RHL 

and 

[0] Z+(P ROOTOPlR 
[1] Z+RHP 

In what circumstance might it be desirable to use ROOTOP rather than ROOT? 
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4. With COM and SEE as defined above, which if any of the following 
expressions are necessarily identical for a general numeric vector Y? 

a. -SEElY b. -SEE COMlY c. -COM SEElY 
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5.3 Matching Function Arguments 

5.3.1 Function Composition 

Composition means the successive application of two functions. For example 
consider 

V12+12(13(14 15»(16 17) 

The composition (p.::) applied to V means apply.:: to V followed by p, and so is 
rendered by 

p.::V12 
6 

The each of this composition is given by first applying.:: to each item of v: 

.::··V12 
12 13 14 15 16 17 

and then p" to the result: 

p··.::··V12 
3 2 

Similarly the each of the composition (+ /.::) is given by 

+/"".::"V12 
12 48 33 

The general rule for applying each to compositions of monadic functions is: 

( PQ)" ++ P .. Q .. 

For dyadic function compositions a left argument has to be allocated to one of 
the two component functions. Sometimes only one allocation of the left argu
ment is sensible. For example consider the composition .<1>: 

'ABC'.<!>'CAT' 
2 3 

'XYZ'.<!>'AXE' 
2 3 

2 3 1 and 2 1 3 are the grade-up vectors with the alphabets 'ABC' and 
'XYZ' respectively of the words 'TAC' and 'EXA'. In this case the rule stated 
above may be applied, that is (.<1»" is given by 

'ABC' 'XYZ'.··<!>··'CAT' 'AXE' 
2 3 1 2 1 3 

and the left argument applies to the leftmost of the two functions in the compo
sition. 

Where the functions P and Q both have possible dyadic meanings, ambiguity 
can arise as to whether a left argument applies to P or Q. For example if the 
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composition £ 1 is applied with left argument (13) and right argument of 2 the 
left argument can relate to either the £ or the 1, thus: 

(13)£12 

1 0 

2 

In such cases composition must be defined explicitly via a defined operator. For 
example: 

[0] Z+L(P COMP1 Q)R 
[1] Z+L P Q R 

which in some APL systems is available as a primitive operator ;; 
(P COMP1 Q)" is equivalent to P"Q", e.g. 

'ABC' 'XYZ' (,t.COMP1<1» "'CAT' 'AXE' 
2 3 1 2 1 3 

Explicitly defining the operator draws attention to the alternative composition 
operator in which the left argument applies to the rightmost function: 

[0] Z+L(P COMP2 Q)R 
[1] Z+P L Q R 

examples of which are: 

, ABC' 'XYZ' (<I>COMP2,t.) " 'CAT' , AXE' 
3 1 2 3 1 2 

2(,t.COMP2<1»"(2 3 4)(5 6 7) 
31223 1 

5.3.2 Ambi-valency 

All functions in APL2 are potentially ambi-valent and this is true also of 
derived functions. Consequently when writing an operator whose derived func
tions may be monadic or dyadic it is normal to write it in two parts, one to deal 
with the monadic case and the other with the dyadic case. 

In Section 5.1.2 the operator SEE was defined to obtain traces for monadic 
processes. This can be made dyadic by 

[0] Z+L(P TRACE)R 
[1] +L1 IF O~ONC'L' 
[2] +0 O+'f' R '=' Z+P R 
[3] L1:L 'f' R '=' Z+L P R 

A branch if dyadic 
A monadic 
A dyadic 

On IBM systems an alternative to the test in line 1 involves event handling thus: 

[1] '+L1'OEA'L' 

Examples: 
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-TRACE/14 
3 f 4 = -1 
2 f -1 = 3 
1 f 3 = -2 
-2 

The order of the operators reduce and TRACE is important: 

-/TRACE 14 
f 1 2 3 4 =-2 

-2 

The trace which was given step by step earlier can now be achieved by 

(-COM TRACE Along 1h4 
f 2 = 1 

1 f 3 = 2 
2 f 4 = 2 

2 

5.4 Recursion with Functions and Operators 
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A recursive operation is one which is defined in terms of itself. A nested array 
is an array whose items are themselves arrays and hence is an inherently recur
sive structure. Using the advanced APL2 features is thus likely to bring about a 
shift in programming style towards recursive methods. In first-generation APL 
reduction of a function F applied to a vector can be described as a process 
whereby F is slotted in between each of the items of the vector thus: 

V[1J F V[2J F V[3J F ..• 

following which right to left execution takes place in the usual way. This is the 
iterative approach to the situation. Another equally valid way of describing 
reduction is to define it as 

(tV) F (F/HV) 

which has the merit of requiring only a description of how the first item behaves 
in relation to the rest, together with a (usually obvious) stopping rule to deal 
with the simplest case. The intermediate working is thus completely delegated to 
a computer. For example + / can be described as 

[OJ Z+SUM R 
[1 J +L 1 IF 1 = p • R II • ensures function works for scalar R 
[2] +0 Z+(tR)+SUM 1~R 
[3] L1:Z+R 

Now consider the problem alluded to in Section 1.4.2 of defining a function 
for the path to the first occurrence of a given simple scalar L in an indefinitely 
deeply nested vector of vectors R. This is a recursive problem calling for a recur
sive solution: 



134 

[OJ Z+L PATH R;T 
[1J +L1 IF 1S:R 
[2J +0 Z+10 
[3J L1:T+(L£-£-R)11 
[4J Z+T.L PATH T~R 

APL2 IN DEPTH 

A branch to L 1 if R not a simple scalar 
A if it is, stop and return empty vector 
A identify subtree T at current depth 
A •• then find path within T 

V12+12(13(14 15))(16 17) 

14 PATH V12 
221 

If L does not belong to R, an error is reported. One way to deal with this is to 
have PATH return an empty vector in this case - this is achieved by adding 
another condition to line 1: 

[1J +L1 IF A/(L££R).1S:R 

A drawback to this solution is that it does not deal with the "level-breaker" case 
described at the end of Section 1.3.1. 

V+'ABC'(C13) 
3 PATH V 

RANK ERROR 
PATH[3J L1:T+(L£-£-R)11 

A A 

This situation is detected when R is a non-simple scalar so an additional test 
must be added: 

[OJ Z+L Path R;T 
[1J +L1 IFA/(L££R).1S=R 
[2J +0 Z+10 
[3J L11+L2 IF(10):pR 
[4J T+(L£-£-R)11 
[5J +0 Z+T.L Path T~R 
[6J L2:Z+(Cl0).L PathtR 

DISPLAY 2 Path V 
r> 
I r&l 
I 2 101 2 
I L...J 
L£ ___ ---' 

A go to L2 if R scalar 

A .. and return the level-breaker 

The following recursive shell is one which will be used frequently in the 
remainder of this text: 

VZ+L FN R 
[1J +L1 IF ••• 
[2J +0 Z+ •• FN •• 
[3J L1:Z+ ••• 

A stopping condition 
A recursive expression 
A stopping action 

An example of an operator developed using this shell is SIMPLE in which the 
function P is applied recursively to each item of R until simple arguments are 
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reached. This has the effect of making non-pervasive functions "penetrate" deep 
objects. 

[OJ Z+L(P SIMPLE)R 
[1 J +L1 IF 2>::R 
[2J +0 Z+L(P SIMPLE)-R 
[3J L1:Z+LPR 

V12+12(13(14 15»(16 17 ) 

12 12 13 13 14 15 16 17 

Read a line such as the above as an extension of 2pR, i.e. the primary subdivi
sion of the expression is 

2 (pSIMPLE) V12 

with pSIMPLE being thought of as "an enhanced version of P." This, like COM in 
Section 5.1.2, demonstrates that the binding of operators to functions is stronger 
than that of functions to arguments, or in simple terms operators are resolved 
before functions. 

The recursive shell given above indicates the general organization of a recur
sive operation within which certain requirements must be met for it to be a valid 
recursive operation. 

First, the definition must be explicit for some value or condition of the argu
ment. This condition is the stopping condition, e.g. 2>::R in line 1 of SIMPLE. 
If there is not at least one value or condition for which the definition is explicit 
the recursive operation is circular and will never terminate. 

Secondly, the recursive operation must call itself with a modified argument 
which approaches a stopping value or condition and which it reaches in a finite 
number of steps. In the operator SIMPLE the recursive expression in line 2 
achieves this through the each operator which causes the argument of the 
derived function to be applied to data one level down in the structure of R. A 
recursive operation which does not modify its argument in the course of a recur
sive call is called regressive and provided at least one recursive call is made it is 
also non-terminating. 

In recursive operations the distinction between the actions of local and global 
variables is very important. Consider the following regressive recursive function: 

[OJ Z+FN R 
[1] Z+1 
[2J +0 IF 0~I+I-1 
[3J Z+Z.FN R 

which terminates only when a system limit such as WS FULL is encountered or 
an attention interrupt is issued. Assuming that a value for the global variable I 

was set before the first call, the value of I on termination indicates how many 
recursive calls took place. However if the value of I were set within the func
tion e.g. by 

[1.1] 1+100 
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then the value of I would be reset on every call. If a temporary variable is used 
for an intermediate calculation at a specific level within a recursive function it 
must be localized as T is in PATH, otherwise only one copy of T would exist no 
matter how great the depth of the recursive calls. 

Illustration: Selective Enlist 

A selective enlist function performs the enlist process in a gradual way and stops 
when depth gets to a prescribed level L. It provides another example of a func
tion which uses the recursive shell. 

[0] Z+L ENLIST R A L is an non-negative integer, R an array 
[1] +L1 IF L~=R A stop at target depth 
[2] +0 Z+t./L ENLIST"R A if not go one level lower 
[3] L 1 : Z+c:R A ensure that simple non-scalars are enclosed 

The principle is that for vectors 0 ENLIST R is simple, and provided that the 
items of R are themselves vectors at every level 0 ENLIST R is equivalent to 
E:R. Increasing values of L give progressively "gentler" enlists in the sense that 
more levels of structure are preserved. 

The function ENLIST involves some sophisticated coding in line [2]. The 
strategy is that if the depth of the object is greater than the target, each item is 
separately ENLISTed and the results catenated; hence the • /. Catenate 
reduction, • /, requires a final enclosure in order to ensure rank reduction (this 
is discussed in more detail in Section 5.5.2), hence the necessity for t prior to 
,f. If L is greater than or equal to =R, ENLIST adds one additional level of 
enclosure. 

Here is an example of the use of selective enlist applied to a tree of character 
strings representing the names of disk files and directories: 

V51+'DIR1'('F1' 'DIR2'('F2' 'F3') 'DIR3'(c:'F4')) 
DISPLAY V51 

r> 
I r--, 
I IDIR11 
I L---J 

I 
I 
I 
I 

r+----------------------------------------~ 

I r+-1 
I I F11 
I L-..-J 

I 
I 

r--, r+>----------., 
I DIR2 I I r+-1 
L---J I IF21 

I L-..-J 

r-' 
IF31 
L-..-J 

LE:----------' 

r--, r-i -------, 

I DIR31 I r+-1 
L---J I IF41 

I L-..-J 
LE:-_ .... 

LE:----------------------------------------~ 
LE:--------------------------------------------------~ 

E:V51 
DIR1F1DIR2F2F3DIR3F4 
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DISPLAY 1 ENLIST V51 
r> 
I r+~ r+-, r+~ r+-, r+-, r~ r+-, 
I I DIR1 I I F1 I I DIR21 I F21 I F3 I I DIR3 I I F41 
I ~ L......J ~ L......J L......J ~ L......J L€ ______________________________________ ~ 

DISPLAY 2 ENLIST V51 
r+ 
I r+~ r+-, r+~ r r---' I 
I IDIR1 I I F1 I IDIR21 I r+-, r+-, IDIR31 I 
I ~ L......J ~ I IF21 IF31 ~ I 
I I L......J L......J I 
I L€ L€ 
L€ 

Exercises 5b 
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r+-, 
IF41 
L......J 

1. Construct recursive functions (a) PRODUCT and (b) JOIN which describe xl 
and, I in a manner akin to SUM in Section 5.4. 

2. The function Path in Section 5.4 requires that the items of its right argument 
be vectors. What changes must be made so that the items of R may be of any 
rank? 

3. Use the recursive shell described in Section 5.4 to write a function CHALL 

which replaces all occurrences of L [ 1 J in a vector R with L [ 2 J. (Use the func
tion CHANGE of Section 1.4.2.) 

4. A dyadic function P with header Z+L P R can be thought of as combining 
with one of its arguments, say R, to provide a new monadic function (P R) 

which is applied to the other argument, e.g. *2 can be thought of as the 
monadic function "square." Equally (L P) can be thought of as a monadic 
function applied to R so that 3* means "raise 3 to the power." Applying such 
functions repeatedly, say Q times, is conveniently handled by defining opera
tors with operands P and Q. 

a. Write an operator POWER1 whose header is 

[OJ Z+L(P POWER1 Q)R 

and which causes P R to be applied Q times to L with the intermediate result 
being fed back each time. For example if P is * and R is 2, 1 .5 (*POWER1 3) 2 
means «1.5 2)2)2. 
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b. Write an operator POWER2 with a similar header which causes the function 
L P to be applied Q times to R with feedback so that 1 .5 (",POWER2 3) 2 means 
1.5 to the power(1.5 to the power 1.5 2). Assuming convergence, POWER2 pro
vides an iterative solution of the algebraic equation y = L P y. 

c. Use POWER2 to find a solution of the equation y = cos(y). Take a start 
value of 1 and investigate the number of iterations required for convergence to 
six significant figures. 

d. A cryptographer defines the 26 upper-case letters of the alphabet as ALF 
and uses an anagram of ALF, e.g. ALF[26?26], as a code replacement string L 
to encrypt a message R. The function he uses to do this is 

[OJ Z+L CODIFY R 
[1J Z+L[ALF1RJ 

To make his encryption more secure he repeatedly encrypts the encrypted word. 
Which of POWER1 and POWER2 above should he use in order to encrypt a source 
message four times in succession? How does the receiver then decode it? 

5. To "polish" a matrix means to subtract a sequence of values, say the row 
means, one from every row, and then another sequence, say the column means, 
one from every column. Write an operator POLISH which achieves this, and use 
it to obtain the mean polish and also the median polish of the matrix 

066 
4 0 2 

(The median of a vector R is defined as .Sx+/RU .SxO 1+pR+R[.t.R]] ) 
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5.5 Extensions to First-generation APL Operators 

5.5.1 Reduction 

A general principle of reduction is that it reduces rank. It does not reduce depth. 
With scalar dyadic functions this is an entirely natural rule, e.g. +/2 2 2 trans
forms a vector to a scalar and and + / 2 2 p t 4 transforms a matrix to a vector. 
However when reduction is applied to non-pervasive functions, adjustments to 
depth must sometimes be made in order to maintain the rank-reduction rule. 
The functions p and • have the property of increasing rank, e.g. starting with 
two scalars 2 and 4 both 2 p 4 and 2. 4 give results which are vectors. In order 
tha t p / 2 2 2 and • /2 2 2 should produce scalars an extra level of nesting 
must be provided. 

As noted in Section 5.4 F-reduction can be described by inserting the func
tion F into all the available spaces of V[ 1 J V[ 2 J • •• and evaluating the 
resulting expression. So what changes must be made to the first-generation 
APL rule to deal with this state of affairs? Since indexing provides cross-sections 
of arrays, V[ 1 J is not the first item of v, rather it is a container for the first item 
which can be opened by:>. Thus it is F OO rather than F which is inserted into the 
spaces of V[ 1 J V[ 2 J •.•. At the function phase the each rule (see Section 
4.1) applies. If the items are scalars or if F is pervasive the each makes no dif
ference, and so there is no inconsistency with the first-generation APL view of 
reduction. 

Alternatively one can think in terms of pick which penetrates the items, so 
that F-reduction is obtained by inserting F into the spaces of 

(1:>V) (2:>V) (3:>V) 

and applying a final enclosure. 

illustration: Reduction applied to matrix multiplication 

Consider the sequence of algebraic matrix multiplications which is given by 

+.x/A B C 

where A, Band C are compatible matrices. One way to determine the exact 
result of this expression is to consider a recursive definition of the derived func
tion OF arising from applying reduction to +. x (cf. SUM in Section 5.4): 

[OJ Z+OF R 
[1J +L1 IF 1=pR 
[2J +0 Z+c(tR)+.x:>OF 1~R 
[3J L1:Z+ctR 

ABC is a nested vector, comprising cells which contain matrices. The function 
+. x can properly be applied only to items, that is the contents of cells, hence the 
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depth reducing t and ::> in line 2. After executing the +. x the resulting matrix 
occupies a single cell, hence the enclosure in line 2. The encloses which appear 
immediately to the right of the assignment statement in both lines 2 and 3 show 
that the result of the +. x reduction is a scalar of depth two. In order to achieve 
the mathematical matrix product ABC which is a depth-one matrix it is neces
sary to apply either::> or t. The expressions 

::>+.x/A B C and t+.x/A B C 

have equivalent output for the reasons given in the Section 4.3.4. Another way 
of looking at the role of c and::> in DF is that what reduction reduces is rank. 
pA B C is 3, and has rank one since p always returns a vector, and so the result 
of the +. x reduction must be a scalar, namely the enclose of the solution matrix. 
Eliding the references to R in the recursive part (line 2) gives 

which is another occurrence of the c ::> sequence observed in the each rule. 

5.5.2 Reduction with Rank Greater than one 

If reduction is applied to objects of rank two, enclosure takes place along the 
last dimension and the vector rule for reduction is applied to each item of the 
result. Enclosure along the last axis gives a row vector whose items are the rows 
of the array. The final result is the vector whose items are the plus reductions of 
each of them, e.g. 

DISPLAY +/2 3p16 
r~ 
16 151 
L_-----l 

Now consider the reductions of non-pervasive functions such as p and •. 

DISPLAY ./2 3p16 

I ~r ... ·----, 
I 11 2 31 
I L------l 
L£ ______________ ~ 

DISPLAY ./2 2p'ABCD' 

I • 
I~....., ~ 
I IABI ICDI 
I L..........J L..........J 
L£ ____ ---' 
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DISPLAY ::>",/"c[2J2 3pl6 
r+·----------------~ 

I r+----, r .... ·---, 
I 11 2 31 14561 
I L~-----l L~-----l 
L€ ________________ ~ 

, / A is the same as c [ 2] A for simple arrays A. Contrast this with 

DISPLAY ,/"2 2p'ABCD' 
r+-, 
+ABI 
ICDI 
L...J 
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The each makes a scalar function from ,/, and so following the discussion in 
Section 4.1.1 ,/ is applied to the four character scalars separately, and the 
result is a simple two by two matrix. 

In the next example enclosure again gives two row vectors: 

DISPLAY p/2 2pl4 
r ... ·-----------~ 
I r+, r+----, 
I 121 14 4 41 
I ~.J ~-----l 
L€ __________ --l 

and the result is (1 p 2) (3 p4). The principle, formally defined as 

F/A + ... ::>"F/"c[ppAJ 

extends in a natural way to arrays of higher dimension: 

DISPLAY p/2 2 2plS 
r 

oj. r, r+----, 
I 121 14 4 41 
I ~.J ~-----l 

I r> I r+ I 
I 16 6 6 6 61 IS S S S S S SI 
I ~ ~ 

L€ 

In the above example the principles of rank reduction apply and the result is a 
two by two matrix. Enclosure along the last dimension gives a two by two struc
ture of row vectors, and applying p / to each gives 

(1p2) (3p4) 
(Sp6) (7pS) 

A similar argument applies with catenate in the next example: 
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DISPLAY ,/2 2 2p'ABCDEFGH' 
r+'-------. 
'" r+--, r+--, 
I IABI ICDI 
I L-J L-J 

I r+--, r+--, 
I IEFI IGHI 
I L-J L-J 
LE:------I 

the steps of which can be broken down as: 

DISPLAY ~",r'c[3J2 2 2p'ABCDEFGH' 
r+------, 
'" r--, r+--, 
I IABI ICDI 
I L-J L-J 

I r+--, r+--, 
I IEFI IGHI 
I L-J L-J 
LE:-------' 

5.5.3 Scan 

APL2 IN DEPTH 

Scan defines an array of reductions, and informally therefore preserves the rank 
which reduction reduces. For example 

V++.x\M1 M2 M3 

for compatible matrices M1, M2 and M3 is a depth two vector of matrices 

(M1) (t+.x/M1 M2) (t+.x/M1 M2 M3) 

i.e. V[1]::cM1, V[2J::cH.x/M1 M2, V[3J::cH.x/M1 M2 M3. Because V is 
a vector, tV and ~V are not equivalent in this case. Both bring about depth 
reduction but t returns the matrix M1, whereas ~ returns a rank three depth 
one array whose planes are M1, (M1+. xM2), and (M1 +. xM2+. xM3) respec
tively, possibly padded with os. 

illustration: Co-ordinates of Spirals 

The initial point of a spiral drawn as a two dimensional graph using Cartesian 
co-ordinates and 0 as origin is taken to be P(O,I). A function SPIRAL defines 
four new points which are generated by rotating OP through an angle of R anti
clockwise degrees, and stretching it by a factor L. The result of SPIRAL is a 
matrix, each row of which is the co-ordinates of a point on the spira1. The aux
iliary function t.SPIRAL generates in its second line the rotation matrix M: 

cos () sin () 
-sin e cos e 
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for which V+. xM gives the co-ordinates of the result of rotating the point with 
co-ordinates V through an angle e 
[OJ Z+L SPIRAL R A L is stretch factor, R an angle in degrees 
[1J Z+~+.x\(cO 1),4pcL ASPIRALoRt1S0 

[OJ 
[1 J 
[2J 

0 
-1.414 
-4 
-5.657 

0 

Z+L ASPIRAL R;S;C 
(S C)+1 20R 
Z+Lx2 2pC S(-S)C 

2 SPIRAL 45 
1 
1.414 
0 

-5.657 
-16 

A sand C are sin and cos 
A Z is the transformation matrix 

to move to the next point 

illustration : Scans with Binary Arguments 

With the exception of circle the scans of the scalar dyadic functions have some 
interesting properties. A useful binary matrix for demonstrating these is con
structed by 

M53+(Sp2)T15,(6p51 43),113 

M53 
0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 
0 
0 0 0 0 

0 0 1 0 1 0 
1 0 0 0 0 0 0 0 
1 0 

1 1 

A better visual way of representing this matrix is to represent the os with dots 
and the 1 s with asterisks: 

'.*'[1+M53] 

....... * 

.******* 

.*.*.*.* 
*.*.*.*. 
* ...... . 
*******. 
******** 

Here are the scans of the six relational and four logical primitive functions 
applied to this matrix: 
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=\ <\ S\ ~\ >\ 
.*.*.*.* · ....... .******* .*.*.*.* · ....... 
.*.*.w .. • •••••• *' • ******* . *.*.* .. · ....... · ....... • * ...... • ******* . ....... · ....... 
· .** .. ** • *' •••••• • ******* . ....... · ....... 
* .. ** .. * *' ••••••• *.****** ******** ******** 
*.*.*.*. *' ••••••• *.****** ******** ******** 
*******. *' ••••••• *******. ******** *.*.*.** 
******** *' ••••••• ******** ******** *.*.*.*. 

;I! \ v\ A\ .y.\ .... \ · ....... · ....... · ....... .*.*.*.* .******* 
• •••••• *' • •••••• *' · ....... .*.*.* .. .******* 
. w.*.*.* .******* · ....... .• ****** .******* 
. ** .. **. .******* · ....... .. ****** .******* 
** .. ** .. ******** *' ••••••• * ....... *' *' •••••• 
******** ******** *' ••••••• *' ••••••• *' *' •••••• 
*.*.*.** ******** *******. * ....... *.*.*.** 
*.*.*.*. ******** ******** *' ••••••• *.*.*.*. 

There are four scans which between them have the greatest practical use when 
applied to binary vectors. Subject to the universal rule that scan leaves the first 
item unchanged, the behavior of these scans can be summarized: 

v\ : detects the first 1 and switches all following bits to 1 
A \ : detects the first 0 and switches all following bits to 0 
<\ : detects the first 1 and switches all following bits to 0 
s\ : detects the first 0 and switches all following bits to 1 

illustration : Delete leading blanks from a character vector 

This can be achieved by either of two expressions, viz: 

(v\' '=CV) ICV 

or 

(~A\' ';I!CV)/CV 

Illustration: Display comments only on an APL line 

This can also be achieved by either of two expressions, viz: 

(v\'A'=LINE)/LINE 

or 
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illustration: Remove first occurrence only 

(a) character from a character vector. 

To remove the first occurrence only of X from a character vector use either of 
the two expressions: 

(S;\'X't.CVl/CV 

or 

(~<\'X'=CVl/CV 

(b) word from a sentence. 

Define the sentence as a vector of character vectors (words): 

V52+'VERMONT' 'IN' 'THE' 'THE' 'FALL' 

The first occurrence of THE can be removed by either of 

(S;\~VS2~-c'THE'l/VS2 

or 

The above illustrations exhibit a duality inherent in the scans listed above. In 
particular the last two show that the dual of < is S; and not> as intuition might 
suggest. Another way of describing the behavior of the four scans in a concise 
way is by the following table: 

O-detector 
I-detector 

O-continuation 

A 

< 

I-continuation 

S; 
v 

The functions A and v down the leading diagonal have the property of 
idem potency, that is 

A ++ AAA and A ++ AvA 

Consider the functions which are the "not"s of the functions in the above table. 
The behavior of their scans depends on whether the first bit is 1 or 0, and their 
effect is either that of an "alternator," that is a function which takes a series of 
uniform bits and transforms it into an alternating sequence of Is and Os, or a 
"sweeper," that is a function which makes all bits alike. 

For first bit = 1 the following table applies: 
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O-con tin ua tion 1-continuation 

Alternators 
Sweepers 

> 
¥ 

If the first bit is 0 the roles of alternator/sweeper are reversed. The functions 
down the non-leading diagonal of this table are cyclic of order two, that is 

A ++ A~A~A and A ++ A>A>A 

The functions = and ~ are also alternators but are not dependent on the first 
bit. Instead they have the effect of doubling the length of the subsequences 
within alternating sequences, and hence quadrupling, octupling etc. them by 
repeated application. 

illustrations: Spacing character vectors 

Spaces can be placed between alternate characters of a character vector by: 

(=\(2xpT)pO)\T+'FREDERICK' '" start with space 
F RED E RIC K 

(~\ (2xpT) p 1) \T+' FREDERICK' f'I start with first character 
F RED E RIC K 

Selecting alternate items 

Using scan is an alternative method to indexing: 

(=\(pT)pO)/T+t10 
2 4 6 8 10 

(~\(pT)p1)/T+t10 

357 9 

illustration: Adding columns of zeros to table 

(~\(2x2~pNM)p1)\NM 

f'I even numbered items 

f'I odd numbered items 

opens up alternately spaced columns of zeros in a numeric matrix NM. 

illustration: Parity checking 

=/BV and ~/BV give 1-parity and O-parity checks respectively for a binary 
vector BV: 

1 0 

BV+O 1 1 1 0 1 
(=/BV).(~/BV) 

Further ~\BV gives on-going O-parity checks on the sequence so far: 
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BV+O 1 0 1 
;I!\BV 

010110 

The scan diagrams given earlier cover the six relational and four logical scalar 
dyadic functions. Apart from the circle function (0) which is special, there are 
ten further primitive scalar dyadic functions. What are the results of applying 
their scans to the matrix M53? Four of them give results outside the binary 
domain, the remaining six duplicate the tables in the following pairings: 

« I) (S !) (v r) (A L> (A x) 

The functions above can also be arranged in dual pairs where "dual" in this 
context means that ~F\~V is equivalent to (dual F)\ V. The primitive functions 
which possess duals are 

F = A ~ < > r 
dual ;I! v ¥ S ~ L x 

The easiest way to visualize this duality is to rotate the appropriate scan 
matrices above about a horizontal axis. 

5.5.3.1 Reversing scans 

The following operators invert scans with vector arguments: 

[0] Z+(P UNSCANlR 
[1 ] Z+R[1],(HRlP -HR 

[OJ Z+(P UNDOlR 
[1] Z+R[1J,(-HR)P HR 

and the following relations apply: 

P COM UNDO R ++ P UNSCAN R 
P COM UNSCAN R ++ P UNDOR 

[OJ Z+L(P COMlR 
[1] Z+R P L 

UNSCAN works if P is assocIatIve and there exists an inverse function (see 
Section 4.4.1.2) - the only functions satisfying this criterion are + - = and ;I!. 

-UNSCAN 
tUNSCAN 
=UNSCAN 

and -COM UNDO both reverse 
and tCOM UNDO both reverse 
and =UNDO both reverse =\ 

;l!UNSCAN and ;l!UNDO both reverse ;I! \ 

+\ 
x\ 
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illustration : Gray codes 

Gray codes are a method of representing integers using binary digits in such a 
way that only one bit is changed when an integer is incremented by 1. ;I!\ con
verts Gray code representations to binary and ;I!\UNSCAN does the reverse. Gray 
codes can therefore be obtained by first obtaining binary representations using T 

and then applying UN SCAN. A table of the first 15 integers in Gray code is given 
by: 

T,:::I[2];I!UNSCAN n c:[1] (4p2)TT+\ 15 
1 0 o 0 1 
2 0 0 1 1 
3 0 0 0 
4 0 0 
5 0 1 
6 0 0 1 
7 0 1 0 0 
8 1 0 0 
9 1 1 0 1 

10 1 1 1 
11 1 1 0 
12 1 0 1 0 
13 1 0 1 
14 1 0 0 1 
15 1 0 0 0 

5.5.4 Expand 

Suppose that a character matrix M is given: 

r+-1 
+BATI 
IMANI 
L-.....I 

M+2 3p'BATMAN' 
DISPLAY M 

together with the instruction "Space the matrix M." On the structural level this 
might imply using ravel with axis (see Section 1.2.3), e.g. 

rr+-1 
HBATI 
II I 
IIMANI 
LL-.....I 

M+2 3p'BATMAN' 
DISPLAY ,[1.1]M 

At the data level there are at least nine possible interpretations of this instruc
tion as the following set of expressions show. Consider first 
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DISPLAY 1 0 1 0 1\M 
r+----, 
.j.B A TI 
1M A NI 
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Unlike first-generation APL where \ is the junction, expand, \ is now an oper
ator so the derived function in the above expression is 1 0 1 0 1 \. Enclosing 
M forces scalar expansion of the right argument as in the next expression: 

DISPLAY 1 o 1 o 1\cM 
r+ 
I r+---, r+---, r+---, r+---, r+---, 
I .j.BATI .j. I .j.BATI .j. I .j.BATI 
I IMANI I I IMANI I I IMANI 
I L...-...J L...-...J L...-...J L...-...J L...-...J 
L£ 

DISPLAY 1 0 1 0 1\ "M 

r+ 
.j. r+ i r+----, r" i 
I IB B BI IA A AI IT T TI 
I 
I r+----, r" i r" i 
I 1M M MI IA A AI IN N NI 
I 
L£ 

Replacing enclose by each forces scalar expansion of each item of M: 

The each in the above expression has the derived function 1 0 1 0 1 \ as its 
operand. As with replicate (see Section 2.2.1) the left operand of \ must be 
simple. An expression such as (c 1 0 1 0 1) \"M thus leads to a DOMAIN 

ERROR. To apply each in this situation it is necessary to create a defined func
tion, e.g. 

[OJ Z+L EXPAND R 
[1] Z+L\R 

DISPLAY (1 0 1) (1 0 0 1) \ .. 'AS' 'DE' 
DOMAIN ERROR 

DISPLAY(1 0 1)(100 n\"'AB' 'DE' 
A A 
DISPLAY (1 0 1)(1 0 0 nEXPAND"'AB' 'DE' 

I r+---, r----' 
I IA BI ID EI 
I L...-...J L....-...J 
L£ ______ ..J 
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DISPLAY (c:1 0 1 0 1 ) EXPAND"M 
r+-----------------------, 

-I- r· I r· I r· I 
I IB B BI IA A AI IT T TI 
I 
I r--, r--, r--, 
I 1M M MilA A AI IN N NI 
I I L£ ______________________ ~ 

APL2 IN DEPTH 

Partial enclosure requires matching lengths between 1S in the left operand and 
the number of columns or rows in the right argument: 

DISPLAY 1 0 1 0 1\c:[1]M 
r+------------------------~ 

I r+-, r-, r+-, r-, r-, 
I IBMI I I IAAI I I ITNI 
I L-.J L-.J L-.J L-.J L-.J L£ ________________________ ~ 

DISPLAY 1 0 1\c:[2]M 
r+-----------------, 
I r---, r+---, r---, 
I I BAT I I I I MAN I 
I L-.J L-.J L-.J 
L£ ________________ ~ 

Now use each once again to force itemwise scalar expansion of first columns, 
then rows: 

DISPLAY 10 1\"c:[1]M 
r· 
I r---, r+---, r+---, 
I IB MilA AI IT NI 
I L-.J L-.J L-.J 
L£ ________________ ~ 

DISPLAY 1 0 1 0 1\"c:[2]M 
r· 
I r+--, 
I IB A TI 
I' 1-__ -1 

r--, 
1M A NI 
I I 

L£ ______________ --I 

Matching disclosures make the results simple: 
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r+---, 
... B MI 
IA AI 
IT NI 
L--....J 

r+--, 
... BMI 
I I 
IAAI 
I I 
ITNI 
L-.J 

DISPLAY ~[2J1 0 1\-c[1JM 

DISPLAY ~[1J1 0 1 0 1\-c[2JM 

5.5.5 Outer Product 
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The key phrase associated with outer product is, as in first generation APL, each 
with every, that is each of the items in the left argument is combined through the 
function operand with every item in the right argument. However since any 
result producing dyadic function can be the operand, the depth of the result 
may change. Consider for example 

DISPLAY (2 2)3 0 .+3(4 5) 
r+--------, 
... r+---, 
I 15 51 
I L~--.J 

I 
I 6 

r+---, 
16 71 
L~--.J 

r+---, 
17 81 
~--.J I 

LE:-------' 

DISPLAY (2 2)3 o .p3(4 5) 
r+----------------~ 

... r+---, r+---, 
I H 31 ... 4 51 
I 13 31 14 51 
I L~--.J L~--.J 

I r+----, r • i 
I 13 3 31 14541 
I ~~ L~~ 
LE:----------------~ 

Each cell of the result is obtained as 

Z[I;JJ ++ c(~L[IJ)F~R[JJ 

Compare this with the each rule (see Section 4.1) which states that if Z+L F"R 
then 

Z[IJ ++ c(~L[IJ)F~R[IJ 
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If the arguments are of higher rank than vectors, replace replace I and J above 
by the indices necessary to reach scalar level. For example, if Land Rare 
matrices 

Z[I;J;K;L] ++ c(~L[I;J])F~R[K;L] 

or more generally 

Z[LI;RI] ++ c(~L[LI])F~R[RI] 

where LI and RI are index sets for Land R of appropriate rank. 
The shape rule from first-generation APL still applies, viz.: 

the shape of the result is the catenation of the shapes of the arguments, 

or more formally: 

pZ ++ (pL).pR 

Establishing the shape of the result initially is often very helpful in working out 
the values of outer products. For example, the following outer products neces
sarily result in two-item vectors: 

DISPLAY"(1 2,.xc3 4)((c1 2),.x3 4) 
r+--------. 
I r-r r-r 
I 13 41 16 81 
I L-.--.J L_--.J 
L£ _____ ---' 

r" 
I r---, r---, 
I 13 61 14 81 
I L-.--.J L-.--.J 
L£ _____ ---' 

On the other hand, the following outer product must be a scalar: 

DISPLAY (c1 2)·.xc3 4 

I 
I r+---, 
I 13 81 
IL-.--.J 
L£ __ ---' 

5.5.6 Inner Product 

In first-generation APL, inner product operands are restricted to primitive 
scalar functions and the shape vector rule dominates the outcome in that if L 
and R are left and right arguments respectively it is necessary (subject to scalar
extension flexibility) that 

(-1tpL) ++ 1tpR 

The shape of the result is (pL), pR with both the matching inner shape vector 
items removed. 

The most common form of inner product is that in which a pair of matrices L 
of dimension (m,k) and R of dimension (k,n) is reduced to a single matrix of 
dimension (m,n). 
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k n 

m L k R C]poQC] 
Each cell of the result of L Po Q R is the result of first applying the functions Q 

between each item of a pair of vectors, one a row of L and the other a column of 
R, and then doing a P reduction on the result. The two functions P and Q thus 
behave quite differently, Q is a function operating between matching pairs of 
items, P is the operand of a reduction. 

The most frequently occurring inner product is + 0 x which is equivalent to 
matrix multiplication in the mathematical sense. Each cell of the result is an 
itemwise product of two vectors, and then plus reduction is applied to the 
resulting vector. 

Another frequent inner product in first-generation APL is A 0 =. By the same 
reasoning this gives 1 only if all (AI) the matching pairs in the vectors are equal. 
Similarly v 0 = gives 1 if at least one (v /) of the matching pairs are equal. A and 
v as left operands of inner products thus model the universal and existential 
quantifiers respectively of symbolic logic. 

The logical functions give rise to other inner products with binary arguments: 

A 0 v gives 1 if all pairs contain at least one I 
v 0 A gives 1 if at least one pair has two Is 
A 0'" gives 1 if there are no pairs of matching Is 
A 0 ¥ gives 1 if all the pairs consist of two Os 

Some inner products which apply to numeric arguments are: 

r 0 L gives the maximum of a set of pairwise minima (maximin) 
Lor gives the minimum of a set of pairwise maxima (minimax) 
L 0 - gives the minimum of a set of differences of paired items 

In APL2 the shape rule still applies but operands may be both user-defined 
functions on the one hand, and non-scalar primitive functions on the other. For 
example in considering the last of the above inner products it is likely that the 
absolute difference might be of more interest, that is the inner product LoAD 
where 

[OJ Z+L AD R 
[1] Z+IL-R 

2 4 7 9 LoAD 4 1 6 15 

The price of this increase in flexibility is a slight increase in the complexity of 
the inner product rules. To evaluate L Po Q R the following sequence of actions 
must be carried out: 

Step 1 : Enclose Land R along inner matching axes. 
Step 2 : Perform Q outer product. 
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Step 3 : Apply P / within each cell, or equivalently P / .. to each cell. 

Consider as a further example the inner product 

T+.pT+2 2pl4 

Enclosure along last and first dimensions of left and right arguments respec
tively means that the p step of the operation consists of forming the outer 
product of the two vectors 

(1 2)(3 4) and (1 3)(2 4) 

The each rule applied to outer products as described in the previous section 
leads to the depth-two rank-two array whose four cells are 

(e1 2p1 3) (e1 2p2 4) 

(e3 4p1 3) (e3 4p2 4) 

Now apply +/" (that is +/ within each cell) to give the final result 

4 6 
8 8 8 12 12 12 

Eliding arguments the picture is 

e+/p~ 

emphasizing that a function composition occurs within each cell. 
Formally the definition of the inner product Z+L(P.Q)R is 

Z+F/"(e[ppL])o.G e[1]R 

and the shape of its result is 

pZ ++ (-1~pL).1~pR 

Inner products allow great programming versatility as the next illustrations 
show. 

illustration : Finding vowels In words 

Consider the difference between the following two expressions: 

(e'CAT')o.l'AEIOU' 
2 4 4 4 4 

'CAT'L.l'AEIOU' 
2 

The inner product L. 1 returns the index of the first vowel in the word 'CAT'. 
To find the first vowel in each of a vector of words use 
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'CAT' 'ELK'L.l- c 'AEIOU' 
2 1 

or equivalently 

L/'CAT' 'ELK'·.l'AEIOU' 
2 1 

The case where the right argument of P. Q is a scalar is of special interest since 
P / of a scalar does not involve an execution of P. Thus if P is any scalar func
tion 

'CAT' P.l'A' 

is equal to 2 and 

'CAT' P.l c 'AEIOU' 

is equal to 4. 

illustration : Gradient of mid-points 

Define 

[OJ 
[1] 

Z+L GRAD R 
Z+tLf. -R 

[OJ 
[1 J 

Z+L MIDPT R 
Z+.5xL+R 

to return the gradients and mid-point of pairs of points defined as two-item 
vectors of Euclidean co-ordinates. Ignoring the complexities of zero and infinite 
gradients, if A, Band C are three points then 

A B GRAD.MIDPT B C 

gives the gradient of the line joining the midpoints of AB and Be. 

illustration : Sampling Extreme Values from Uniform Distribution 

This illustration is a variation on the function deal. The expression n? 1 00 

describes a random sample of n integers drawn from the uniform distribution of 
integers 1 to 100. For n not exceeding 100, nr • ? 1 00 returns the maximum of a 
sample of n such integers. nr • ? ··mp 1 00 returns the maxima and nL • ? "mp 1 00 

the minima of m such samples. For example: 

10r.?-15p100 
97 9S 88 92 90 97 93 95 100 84 56 97 95 96 94 

3r. ?··15p100 
84 57 79 81 81 67 95 93 95 53 72 85 69 58 92 
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10l.?"15p100 
5 2 10 7 9 16 11 4 1 2 1 1 3 3 7 

3l. ?"15p100 
19 56 17 24 12 44 22 20 45 18 44 28 34 16 14 

APL2 IN DEPTH 

The functions • and p lead to a further subtlety on account of their rank
increasing property discussed in Section 5.5.1. Consider for example the inner 
product 1 2 3 ••• 4 5 6. The shape rule for inner product requires that the 
result is a scalar since discarding the inner (and only) axes leaves nothing in the 
shape vector. To find its depth and value determine first the catenate outer 
product of the two scalars obtained by enclosure along the inner (and only) 
axes: 

DISPLAY (c1 2 3)o •• c4 5 6 

I 
1 r+ I 
1 11 2 3 4561 1 L.. ____ ..... 

LE:---------' 

Then the • /" corresponding to the leftmost catenate in the inner product results 
in a further enclosure for the reason given above, giving as the final result the 
depth three scalar: 

I 
1 

DISPLAY 1 2 3 ••• 4 5 6 

1 r+ I 
111234561 
1 L.. I 

1 LE:---------' 
LE:--------~ 

In summary the evaluation of inner product requires an application of several 
important identities all of which playa role in determining the data, shape and 
structure of the result. Formally these are: 

1.L P.Q R ++ P/"(c[ppL]L)o.Qc[1]R 
2. For Z+Lo.P R, each item Z[I;J] ++ c(::>L[I] )Q::>R[J] 
3. P/"A ++ cP/::>A . 

As a further example consider the evaluation of the expression 1 2 3p. p4 5 
by following the formal rules. First by identity 1 

1 2 3p.p 4 5 ++ p/"(c1 2 3)o.pc4 5 

There is no need for axis specification on the enclosures since both are vectors. 
The shape of the outer product (c 1 2 3) 0 • pc4 5 is the join of two lOS and 
so the outer product itself is a scalar. Applying identity 2 to each item in the 
outer product - in this case the only item - gives 

c(::>1 2 3)p(::>4 5) 
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the result of which is: 

DISPLAY c(~1 2 3)p(~4 5) 
j 

I rr+---, 
I H4 5 41 
I 115 4 51 
I L L...-----.J 

LE:----....J 
that is a scalar containing a rank 3 array. Now PI"" is applied to this interim 
result. Applying identity 3, PI"" c (~1 2 3) P (~4 5) can be replaced by 
cp/~c(~1 2 3)p(~4 5>' Simplifying the ~s in this expression gives 

DISPLAY cp/1 2 3p4 5 
j 

I r+------------------~ 
I oj. r+ j r+ j 

I I 14 4 4 41 15 5 5 5 51 
I I L... L~ ____ __' 

I LE:------------------~ 
LE:------------------------~ 

Finally then, (c 1 2 3) p • p (c4 5) is equivalent to 

DISPLAY 2 3 p.p 4 5 
j 

I r+-------------------~ 
I oj. r+-----,j r+ I 
I I 1444 41 15 5 5 5 51 
I I L~ L... ___ __' 

I LE:------------~ 
LE:--------------~ 

Exercises 5c 

1. Given 

H+2 2p(2 1p16)(2 3p7+16)(2 4P~16)(2 2p9) 

what are ./H and c[2JH? 

2. If 

M+2 3p'ABCDEF' 
A+2 2 3p'ABCDEFGHIJKL' 

what are the values of the following 

a . • /M b .• I""M c . • /A d .• I""A ? 

3. a. Write a function SUBMAT which returns every consecutive submatrix of 
shape L occurring within a matrix R. For example if M54 is the matrix 
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1 0 1 0 1 
1 0 1 1 
o 1 0 
1 o o 

3 3 SUBMAT M54 should return the 2x3 matrix of consecutive 3x3 submatrices 
occurring in M54: 

0 1 0 0 1 0 
1 0 0 1 0 
0 1 1 0 1 0 

1 0 1 0 1 0 
0 1 0 1 0 
1 0 0 1 0 1 0 

(Hint - you may find n-wise reduction useful, see Section 2.2.2) 

b. Use SUBMAT to detect every occurrence of the pattern 

1 0 1 
1 

in a bit matrix. 

c. Write a function PATIN which generalizes this process to match any given 
binary pattern in any binary matrix. 

4. The following three exercises all involve the use of scan. 

a. Write an expression which returns a given character vector cv with double 
spacing between each item, that is two spaces should follow every character, e.g. 

F RED E RIC K 

b. Write an expression which returns cv written in blocks of two characters, 
each followed by a space, e.g. 

FR ED ER IC K 

c. Write an expression which deletes a comment from an APL line, that is all 
characters to the right of A including A itself. 

5. a. Predict the value and structure of 

((2 2)3)o.p6(4 1p'ABCD') 

b. For the two simple matrices 

A+2 2p14 
B+2 2p<i>l4 
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evaluate in full detail the inner product A+. xS and confirm that the result is the 
same as in first-generation APL. 

6. Evaluate the following outer products in terms of value, shape and structure: 

a. 2 4·.+1 4 6 d. 2 3·.p1 4 
b. 2 4· •• 1 4 6 e. 2 4 6· •• 'AS' 
c. 2 2· . p 1 4 f. 2 4 6· •• 'AS' 'CDE' 

7. Using an analogous argument to that in Section 5.5.6 for 1 2 3 ••• 4 5 6 

determine without using a computer the shape, structure and value of: 

a. 3 2 1p.p3 2 d. 1 2 3p •• 4 5 6 
b. 3 2 1p.p3 2 e. 1 2 3N .+2 3 4 
c. 2 3 •• p4 5 6 f. 1 2 3+. N 2 3 4 

8. This exercise is designed to force precise application of the rules for reduction 
and inner and outer products, and should therefore be done in the first place 
without help from a computer. 

The two functions AVG and MID which follow both return the average of L 
and R in the particular case where Land R are both simple numeric scalars. 

[OJ 
[1] 

Z+L AVG R 
Z+.5x+/L.R 

[OJ 
[1J 

Z+L MID R 
Z+L+.5x-/R.L 

Use the rules for reduction and inner and outer products to find the values of 

a. AVG/14 MID/t4 
b. 1 2· .AVG 3 4 5 1 2· • MID 3 4 5 
c. (c:1 2)·.AVG 3 4 5 (c:1 2) •• MID 3 4 5 
d. 1 2 •• AVG345 1 2 •• MID 3 4 5 
e. 1 2 AVG •• 3 4 5 2 MID •• 3 4 5 
f. 1 2 AVG.MID 3 4 5 1 2 MID.AVG 3 4 51 
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5.5.7 Further Topics on Inner and Outer Products 

illustration : Sequences of Inner Products 

In APL2 operands may be either derived or user-defined functions, so that 
expressions such as +. x • - which were invalid in first-generation APL now have 
meaning, e.g. 

1 2+.x.-3 4 (a) 
4 

1 2+.(x.-)3 4 (b) 
4 

To evaluate these apply the binding rules first (see Section 5.2) to work out the 
order in which the operators are applied and then consider the structure rules as 
the first step towards evaluating the detailed results. 

Looking in detail at (a), the binding rules, or equivalently the rule that opera
tors have long left scope, show that the derived function of the the leftmost 
inner product becomes the left operand of the rightmost inner product and so 
the final derived function is (+. x) • -. The first-generation APL rule suggests 
an answer 

(+.x)/(1-3).(2-4) ++ (+.x)/-2 -2 ++ 4 

Under the APL2 rule the first step is to obtain the outer product 

DISPLAY (c1 2) •• -c3 4 
i 
1 r· i 
1 1-2 -21 
1 L...------l 
L€ ___ --' 

Then apply +. xl within each cell to obtain 

DISPLAY +.x/-(c1 2)·.-c3 4 

4 

The APL2 rule thus follows first-generation intuition in this case, the difference 
being that for correct evaluation it is necessary to think of enclose and each, 
even although neither was present in the original expression. 

In (b), following first-generation APL intuition, one might suppose that the 
derived function x. - was applied first between two pairs of scalars and so 
should be equivalent to -, since if the arguments of an inner product P. Q are 
scalars then the function P plays no part, i.e. P. Q is equivalent to Q. This rea
soning would lead to a final result 

1 2+.-3 4 
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namely -4. Correct application of the APL2 rules, however, leads to an initial 
outer product 

DISPLAY (c1 2)·.(x.-)c3 4 

4 

which by the shape rule for the outer product is a scalar, and so it is the +, not 
the x, which is the null function. First-generation APL intuition is thus mis
leading in this case. 

Illustration: Inner Products with Nesting 

This illustration is a discussion of the differences between a pair of expressions 
which might at first sight look as if they should give the same results. They are 

(c1 2)+.xc3 4 and +.x/(c1 2).c3 4 

To evaluate 

(c1 2)+.xc3 4 (al) 

start with the shape rule which requires that the final result is a scalar. Steps 1 
and 2 lead to: 

I 
1 

DISPLAY (cc1 2)·.xcc3 4 

1 r+--, 
1 13 81 
1 L-.--l 
1 LE:----' 
LE:---_........J 

which is too deep for + / to have an effect at Step 3. The final result is therefore 

DISPLAY +/-(cc1 2)·.xcc3 4 

I 
1 
1 r+--, 
1 13 81 
1 L-.--l 
1 LE:----' 
LE:------' 

On the other hand consider 

+.x/(c1 2).c3 4 
11 

(a2) 

The rank rule for reduction (see Section 5.5.1) shows that this must be a scalar, 
namely 
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(c1 2)+.x"c3 4 
11 

(aI) and (a2) are thus not equivalent. 

illustration : Displacement Vectors 

Let B defined as 

B+2 2p(0 1)(2 0)(1 0)(0 2) 
DISPLAY B 

r> I 

'" r+--, r--, 1 
1 10 11 12 01 1 
1 1....--1 1....--1 1 
1 r--, r+--, 1 
1 11 01 10 21 1 
1 1....--1 1....--1 1 
L€ I 

APL2 IN DEPTH 

be considered as a matrix of displacement vectors in two dimensional space (or 
forces, velocities, etc.) so that B is 

VI v2 
WI w2 

and VI is (0,1), v2 is (2,0) and so on. Then:>1 2+.xB gives (vI +2wl)(v2+2w~ 
and :>(c1 2)+.xB) gives (vI'+wI')(v2'+w2') where v'I and v'2 represent VI 
and v2 with x- and y- "stretch factors" 1 and 2 respectively applied to each dis
placement. 

Consider first 

DISPLAY 1 2+.xB 
r> 
1 .----, 
1 
1 
1 

r+--, 
12 11 
1....--1 

1 L€ __ ---' 

i 
1 r+--, 
1 12 41 
1 1....--1 
L€ __ ---' 

L€ __________ ---' 

The result is clearly (1xB[1;]) + (2xB[2;]) ,but why are the vectors 
doubly enclosed? To find out, follow the three steps for evaluating inner pro
ducts in detail: 

Step 1: 
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DISPLAY c:[1JB 
r+------------------------------~ 

I r+----------~ 

I I r---' r+--, 
I I 10 1 I 11 0 I 
I I L~----I L~----I 

I LE:-------------I 

r+------------. 
1 r--, r---' 
I 12 01 10 21 
I L~----I L~----I 

LE:------------' 
LE:------------------------------~ 

Step 2: 

DISPLAY (c:1 2)·.xc:[1JB 
r+-----------------------------~ 

I r+------------. 
I I r---' r+--, 
I I 10 1 I 12 0 I 
I I ~----I ~----I 

I LE:-------------' 

r+'------------, 
I r+--, r+--, 
I 12 01 10 41 
I L~----I L~----I 

LE:-------------' 
LE:------------------------------~ 

Step 3: 

DISPLAY +'-(c:1 2)·.xc:[1JB 
r----------------. 
I 
I 
I 
I 

i 
I r--, 
I 12 41 

I LE:-----.l 
I ~----I 

LE:----.l 
LE:--------------------.l 

Next consider (c: 1 2) + • xB 

Steps 1 and 2: form outer product (c:c: 1 2)·. xc: [1 JB whose two items are 

DISPLAY-((c:1 2)x1~c:[1JB)((c:1 2)x2~c:[1JB) 

r> r> 
I r---' r+--, I r---' r---' 
I 10 21 11 01 1 12 01 10 41 
1 ~----I ~----I I ~----I L~----I 

LE:-------------' LE:-------------I 
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Step 3: apply +, to each of these 2 cells, or equivalently +,.. to the ,entire outer 
product to give the final result 

DISPLAY (c:1 2)+.xB 
r+-------------------. 
I 
I 
I 
I 

r---' 
11 21 
~----I 

I LE:-----' 

i 
I r+--, 
1 12 41 
1 ~----I 

LE:------' 
LE:----------------__ --.l 

This result can also be written (c: ( c: 1 2) xB [ 1 ; J) + (c: ( c: 1 2) xB [ 2 ; J ), 
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Illustration: Outer and Inner Products with Explicit Each 

What are: 

(c:1 2) x" c:3 4 (a) 

(c:1 2) a.x" c:3 4 (b) 

(c:1 2) +.(x··) c:3 4 (c) 

(c:1 2) +.x" B (d) 

where B+2 2p (0 1) (2 0) (1 0) (0 2) as in the previous illustration? 

In (a) and (c) the pervasiveness of x means that the each has no effect. 

DISPLAY (c:1 2)x"c:3 4 

I 
I r---' 
I 13 81 
IL...--' 
LE:-----' 

I 
I 

DISPLAY (c:1 2)+.(x")c:3 4 

I ~ 
I (3 8( 
( L...--' 
I LE:-----' 
LE:-------' 

In (b) however the operand of each is •• x which is not a pervasive function. 
The outer product shape rule forces the final enclosure which is necessary to 
make the result a scalar 

DISPLAY (c:1 2)·.x"c:3 4 

I 
I~ 
I +3 41 
I 16 81 
I L...--' 
LE:-----' 

In (d) each applies to the derived function +. x and effectively cancels one level 
of enclosure: 
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DISPLAY B 
r+ i 

oj. r+--, r+--, I 
I 10 11 12 0 I I 
I L~----l L~----l I 
I r+--, r--, I 
I 11 0 I 10 21 I 
I ~----l ~----l I 
L€ _____ ---' 

DISPLAY (c1 2)+.x-B 

This result is the same as 1 2 + • x:> [ 1 ] B for which the steps are: 

:> [1]B 
o 2 

o 

o 
o 2 

2 2 
4 

1 2+.x:>[1]B 

Illustration: Sequences of Inner Products with Nesting 
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The next two examples demonstrate inner products where one operand is a 
derived function, and one or both arguments is a nested array. 

DISPLAY (c1 2)+.+.xB 
r--, 
13 61 
~----l 

Step 1: the enclosure along the last axis of L gives (cc 1 2), that along the first 
axis of B gives a two-item vector: 

DISPLAY c[1]B 
r· 
I r+--------, 
I I r--, r+--, 
I I 10 11 11 0 I 
I I ~----l ~----l 
I L€ _______ ~ 

r+--------, 
I r+--, r--, 
I 12 01 10 21 
I ~----l ~----l 
L€ _____ ---I 

L€ ________________ ~ 

Step 2: form the outer product which the shape rule requires to be a two-item 
vector: 
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DISPLAY (cc1 2)o.xc[1]B 
r> 
I r'+>--------. 
I I r---' r---' 
I I 10 21 11 01 
I I L~---.J ~---.J 
I L£ __________ ~ 

r-----..., 
I r+--, r+--, 
I 12 01 10 41 
I ~---.J ~---.J 
L£ _________ ~ 

L£ _______________ ~ 

The two items of this outer product are: 

DISPLAY-((c1 2)x1~c[1]B)((c1 2)x2~c[1]B) 

r+-------------, 
I r--, r---' 
I 10 21 11 0 I 
I ~---.J ~---.J 
L£ __________ ~ 

r> 
I r---' r--, 
I 12 01 10 41 
I ~---.J L~---.J 
L£ _________ ~ 

the derived function +. + is applied separately to these items: 

APL2 IN DEPTH 

DISPLAY(+.+/(c1 2)x1~c[1]B)(+.+/(c1 2)x2~c[1]B) 

r--, 
13 61 
~---.J 

or equivalently +. +" is applied to the entire outer product: 

r--, 
13 61 
~---.J 

DISPLAY +.+/-(cc1 2)o.xc[1]B 

The next example differs from the previous one only in the order of execution of 
the two inner-product operators, and shows what a large difference this can 
make: 

DISPLAY (c1 2)+.(+.x)B 
r> 
I I 
I I I 
I I r---' I r--, 
I I 11 21 I 12 41 
I I ~---.J I ~---.J 

I L£ I L£ 

I L£ L£ 
L£ 

Again, here is a step by step analysis. First construct the outer product (step 2) : 
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DISPLAY (cc1 2)o.(+.x)c[1]B 
r+--------------, 
1 

1 

1 

1 

1 

1 

i 
1 r+--, 
1 11 21 
1 L.v---l 
LE:--.......J 

1 LE:-------I 

i 
1 

1 

1 

1 
1 LE:--.......J 
LE:--------' 

LE:--------------------------~ 

The shape rule shows that this is a two-item vector, whose two items are 

DISPLAY (c1 2)+.x1~c[1]B 

i 
1 
1 r+--, 
1 11 21 
1 L~---l 

1 LE:--.......J 
LE:--------' 

i 
1 

DISPLAY (c1 2)+.x2~c[1]B 

1 r+--, 
1 12 41 
1 L~---l 

1 LE:--.......J 
LE:-----.......J 

Apply + / to each item separately: 

i 
1 

DISPLAY +/(c1 2)+.x1~c[1]B 

1 r+--, 
1 11 21 
1 L.v---l 
1 LE: __ .......J 

LE:-----------I 

i 
1 

DISPLAY +/(c1 2)+.x2~c[1]B 

1 r+--, 
1 12 41 
1 L.v---l 
1 LE:-----' 
LE:-----------I 

or equivalently apply + / .. to the vector: 
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DISPLAY +/'"(cc1 2) •• (+.x)c[1]B 

r·--------------------------~ 
1 

1 
1 

1 
1 
1 

I 
1 r---, 
1 11 21 
1 L-.---l 
L£ __ ---I 

1 L£ ____ ---I 

I 
1 
1 
1 
1 
1 L£ __ ---I 

L£ ____ ---I 
L£ ______________ ---I 

APL2 IN DEPTH 

It is rather hard to conceive what the writer of either of the expressions (a) or 
(b) might be doing from the application point of view. Nevertheless they demon
strate the care which must be taken in applying rules precisely when coding and 
evaluating inner products. 

The key message from the above illustrations is that no matter how complex is 
an expression which involves inner and outer products its exact meaning and 
value can be deduced by careful application of the relevant rules. 

5.5.7.1 Inner Product and Scan 

There are relationships between scan and inner product in which the four 
functions /I. x ~ and * play the role of auxiliary functions and triangular 
binary matrices form the inner product right argument. For example: 

D+UTM+(15)·.S15 
1 1 1 1 
0 1 1 1 
0 0 1 1 1 
0 0 0 1 1 
0 0 0 0 

+\15 
1 3 6 10 15 

(15)+. xUTM 
1 3 6 10 15 

x\15 
1 2 6 24 120 

(15)x.*UTM 
1 2 6 24 120 

More generally, the relation to be satisfied is 

F\A ...... A F.aux UTM 

where A is an a numeric array, UTM is the upper triangular matrix of appro
priate shape with 1 s on and above the leading diagonal and aux is the appro-
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priate auxiliary function. The relationship holds for the combinations indicated 
by the entries y in the tables below: 

aux. aux. 
A x ~ * 

;I! y y = y y 
> y y ~ y Y 

F v Y Y F A Y Y 
+ Y x Y Y 

Y f Y 

* Y Y 

5.5.7.2 Decode/Encode and Inner/Outer Products 

Decode and encode share with derived functions the property that they combine 
the actions of simpler functions, + and x in the case of decode, I and f in the 
case of encode. In some special cases there are simple equivalences between 
decode/encode and inner/outer products, for example a polynomial such as 
x2 + 4x + 3 can be evaluated at x = 2 either as 

or as 

and 13 can be expressed as a binary number either as 

2IL13 o .f2*3 2 1 0 

or as 

(4p2)T13 

More interestingly the shape rules for decode and encode are identical to those 
for inner and outer products, and the steps for evaluating the inner product of 
two matrices (see Section 5.5.6) are identical to the first two steps for evaluating 
an inner product. 

illustration : Decode and encode for arrays 

Suppose that 

(L R)+V53+(2 3pO 3 12 10 10 10)(3 2p1 5 2 1 7 3) 
DISPLAY"L R 

r+ i r-, 
-10 0 3 121 -101 51 
110 10 101 12 11 
L.... 17 31 

L....---l 
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The shape rule gives the shape of LJ.R as 2 by 2. The steps for evaluating LJ.R 
are: 

Step 1 : Enclose Land R along inner matching axes. 
Step 2 : Perform J. outer product. 

LJ.R 
67 195 

127 513 

which is the same as (c [ 2] L) •• J. c [ 1 ] R. 

With encode the situation is a little more complex. Consider (tilL) T • LJ.R. The 
shape rule gives the shape of the result as 3 2 4 and the values are: 

(tIIL)T67 195 127 513 
1 5 3 14 
0 1 5 

2 1 1 0 
6 9 2 1 

7 3 7 9 
7 5 7 3 

The first columns of the result: 

1D[3](tIIL)T67 195 127 513 
1 0 
2 6 
7 7 

give the separate encodings of 67 with respect to 0 3 12 and 10 10 10, the 
second columns the encodings of 195 and so on, while the first and second rows: 

1D[2](tIIL)T67 195 127 513 
1 5 3 14 
2 1 1 0 
7 3 7 9 

2D[2](tIIL)T67 195 127 513 
0 1 1 5 
6 9 2 1 
7 5 7 3 

give in their columns the set of codes corresponding to the encoding vectors 
o 3 12 and 10 10 10 respectively. 

To reverse the operation LJ.R in the sense of recovering R from each of the 
two decodings use: 

(c[2]L)T-c[2]LJ.R 
1 5 1 5 
2 1 2 1 
7 3 7 3 
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Exercises 5d 

1. PROD is a vector of vectors in which alphanumeric characters represent ser
vices offered by a set of producers. CONS is another vector of vectors describing 
the various services required by a set of consumers. For example 

PROD+'ABC' 'BDF' 'AC' 'ABCEF' 
CONS+'AB' 'BF' 'ABCD' 

defines the capabilities of four producers and the requirements of three con
sumers with regard to a set of six services. 

a. Write an expression to give an incidence matrix which records which pro
ducers can completely supply each consumers requirements, e.g. for the data 
above the resulting matrix would be 

100 
010 
o 0 0 0 

Amend your code to return a vector of vectors, each of which gives the indices 
of those producers who can completely satisfy a consumer's requirements, e.g. 
(1 4)( 2 4)( 10) in the case above. 

b. Repeat the above with "partially" replacing "completely" so that the result 
for the given data is for the data above the resulting matrix would be 

1 0 1 

1 1 1 

2. a. What does the following phrase do 

+/"(c10 10)o.T120 ? 

b. Why does 

(c10 10)+.T120 

give a DOMAIN ERROR? 



172 APL2 IN DEPTH 

5.6 Applications of User-Defined Operators 

5.6.1 Control Structures 

The following subsections illustrate how to achieve some traditional control 
structures of computer science such as only, unless, upto and until. The opera
tors ONLY, UNLESS and UPTO provide control based on arguments, whereas 
RPTUNTIL and DOUNTIL give control via successive results, either with or 
without feedback. 

5.6.1.1 ONLY 

The object of this operator is to execute a function P on the argument L but 
ONLY on the item which is determined by the index given by Q. 

[OJ 
[1 J 
[1 J 

Z+L(P ONLY Q)R 
Z+L 
(QDZ)+(QDZ)P R 

A P is a function, Q is an index 

illustration: Selective function application 

Actions are performed only on array item with a given index. 

M 
2 3 

4 5 6 
M+ONLY(1 2)99 

1 101 3 
4 5 6 

MrONLY(2 3)99 
1 2 3 
4 5 99 

5.6.1.2 UNLESS 

The operator UNLESS applies a function P to its argument or arguments 
unless a predicate Q is true in which case the right argument is returned . . 
[OJ Z+L(P UNLESS Q)R 
[1J +0 IF Q Z+R 
[2J +L1 IF O~DNC 'L' 
[3J +0 Z+cP R 
[4J L1:Z+cL P R 

A simple predicate is SOMECHAR: 

A P is a function, Q is a predicate 
A exit if predicate true 
A branch if dyadic derived function 
A monadic case 
A dyadic case 
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[OJ 
[1 J 

Z+SOMECHAR R 
Z+' '££tOpcR 

173 

,.. returns I if some character items in R 

Applying UNLESS with each allows P to be applied to each item of an array but 
ignoring any items which satisfy the predicate Q. 

V54+(t3)(4 5)(c'FRED')(7 6) 

2+UNLESS SOMECHAR"V54 
3 4 5 6 7 FRED 9 8 

.t.UNLESS SOMECHAR"V54 
2 3 1 2 FRED 2 1 

The binding rules of Section 5.2 show that the operand Q is tightly bound to 
UNLESS as the parentheses in the header line suggest visually, that is in the 
expression 2+UNLESS SOMECHAR"V it is +UNLESS SOMECHAR to which each is 
applied and not SOMECHAR. 

Illustration : Selective Processing 

Define a nested array containing items of mixed type: 

V55+(1 2.5 'XYZ')('ABC' 3 12) 
DISPLAY V55 

~----------------------------, 
I r+>--------, 
I I 
I I 1 
I I 

r+--, 
2.5 IXYZI 

L.-J 
I L£ _____ ---' 

r+----------, 
I r+--, 
I IABCI 
I L.-J 

3 12 

L£ _____ --' 
L£ ______________________________ ~ 

Take the expression 1 +V55 and modify it to exclude character items: 

1+UNLESS SOMECHAR""V55 
2 3.5 XYZ ABC 4 13 

UNLESS can be applied more than once in the same expression: 

1(+UNLESS SMALL"")UNLESS SOMECHAR"V55 

[OJ 
[1 J 

2.5 XYZ ABC 3 13 

Z+SMALL R 
Z+5>tR 

,.. returns 1 if first item is less than 5 

Explicit parentheses can be used to underline the way in which the two 
UNLESSS are nested. 

1((+UNLESS SMALL)" UNLESS SOMECHAR)"V55 
1 2.5 XYZ ABC 3 12 

In this example the SOMECHAR selection must be applied before the SMALL 
selection, otherwise the result would be a DOMAIN ERROR. 

Here is a further example in which only integers are selected: 
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1+UNLESS FRACTNL·· UNLESS SOMECHAR" t V55 
2 2.5 XYZ 

[0] 
[1] 

Z+FRACTNL R 
Z+R;I!LR 

5.6.1.3 UPTO 

A returns I if R non-integral 

APL2 IN DEPTH 

A variation on UNLESS·· is to stop processing when the predicate is satisfied 
rather than skipping an item. A recursive operator to describe this is UPTO. 

Z+L(P UPTO Q)R 
+LO IF QtR 
+L2 IF O;l!ONC'L' 

L1 : 
+0 Z+(cPtR).(P UPTO Q)1~R 

A P is a function, Q is a predicate 
A stop when condition reached 
A branch if dyadic derived function 
A monadic case 

[0] 
[1 ] 

[2] 
[3] 
[4] 
[5] 
[6] 
[7] 

L2: A dyadic case 
+0 Z+(cL PtR).L(P UPTO Q)1~R 

LO:Z+l0 

V54+(13)(4 5)(c'FRED')(7 6) 

2+UPTO SOMECHAR V54 
34567 

4UPTO SOMECHAR V54 
2 3 1 2 

The operator UPTO has the general structure 

[0] Z+L(P OPR Q)R 
[1] +LO IF ••• 
[2J +L2 IF O;l!ONC'L' 
[3J +0 Z+ ••• 
[4] L2:+0 Z+ ••• 
[5] LO:Z+ ••• 

A stopping condition 
A branch if dyadic derived function 
A monadic recursion 
A dyadic recursion 
A stopping action 

UP TO can be abbreviated to two lines by defining a function 

[0] Z+LEX 
[1] Z+'L' IF O;l!ONC'L' 

and using execute: 

Z+L(P UPTO Q)R 
+0 IF QtZ+R 

A P is a function Q a predicate 
A stopping action 

[0] 
[1] 

[2] Z+it' (c' .LEX.' PtR).' .LEX.' (P UPTO Q)1~R' A recursion 

While this has some appeal in packing all the recursive action into one line, 
many APL programmers would balk at the obscurity of the code necessary to 
do so and would opt for the previous form which also runs faster on account of 
the inherent inefficiency of using execute (it). 
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A variation on UPTO is to specify a stopping item rather than a predicate. 
This can be accommodated by a ONC test on Q on entering the function: 

[OJ 
[1] 

[2J 
[3J 
[4J 
[5J 
[6J 
[7J 

Z+L(P Upto Q)R 
+L01 IF 3=ONC 'Q' 
+(L1 IF Q=tR),L02 

L01:+L1 IF QtR 
L02:+L2 IF O~ONC'L' 

+0 Z+(cPtR),(P Upto Q)1~R 
L2:+0 Z+(cL PtR),L(P Upto Q)1~R 
L1:2+10 

V54+(13)(4 5)(c'FRED')(7 6) 

2+Upto SOMECHAR V54 
34567 

2+Upto(4 5)V54 
345 

FI P is a function 
FI branch if Q is a predicate 
FI stop condition if value 
FI stop condition if predicate 
FI branch if dyadic 
FI monadic recursion 
FI dyadic recursion 
FI stopping action 

A programmer intent on shortening code by using execute might write: 

[OJ Z+L(P Upto Q)R FI P is a function 
[1] 111'+0 IF Q ',('=' IF 3~ONC'Q'),'tR',Z+10 A stopping action 
[2J Z+III'(c',LEX,' PtR),',LEX,'(P Upto Q)1~R'FI recursion 

5.6.1.4 UNTIL 

Instead of applying a function P repeatedly to items in the data as in the case of 
UNLESS and UPTO (or its variants) it is often desirable to carryon executing P 
to the entire data until some specified circumstance arises. This mayor may not 
involve feedback of the result (cf. the distinction between POWER1 and POWER2 
in Exercise 5b). Two further distinctions can be made, first is the function 
monadic or dyadic, and secondly is the test on a predicate or a value. The no 
feedback case is dealt with by the operator DOUNTIL, and feedback by the oper
ator RPTUNTIL. 

A simple way to develop DOUNTIL is to program the monadic case where the 
test is on a stopping value: 

[OJ Z+L(P DOUNTIL Q)R;T 
[1 J Z+' , 
[2J +0 IF Q=T+P R 
[3J Z+(cT),P DOUNTIL Q R 

?DOUNTIL 3 6 
521 524 5 

FI throw a die until a three shows 

The above example is a further illustration of the application of the binding rules 
(see Section 5.2). The binding between DOUNTIL and 3 (right operand binding) 
is stronger than that between 3 and 6 (vector item binding). 

Now extend DOUNTIL to deal with the options of dyadic derived function and 
predicate: 
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[OJ Z+L(P DOUNTIL Q)R;T 
[1] Z+' , 
[2J +LO IF O;l!DNC 'L' 
[3J +L01 T+P R 
[4J LO:T+L P R 
[5J L01:+L1 IF 3;1!DNC 'Q' 
[6J +0 IF Q T 
[7J +L11 
[8J L1:+0 IF Q:;T 
[9J L11:+L2 IF O;l!DNC 'L' 
[10J +0 Z+(c:T),(P DOUNTIL Q)R 
[11 J L2:Z+(c:T),L(P DOUNTIL Q)R 

[OJ Z+L ROLL R 
[1J Z+?LpR 

[OJ Z+ALIKE R 
[1J Z+A/R=tR 

2 ROLL DOUNTIL ALIKE 6 
6 5 5 2 2 4 6 3 

APL2 IN DEPTH 

A P is a function, Q is a test 

A needs match if Q not predicate 

A throw a pair of dice until 
A a double appears 

For the purposes of copy-typing the condensed form using execute (!II) is often 
more useful: 

[OJ Z+L(P DOUNTIL Q)R;T 
[1J T+!IILEX.' P R',Z+" 
[2J !II'+O IF Q ',(':;' IF 3;1!DNC'Q'),'T' 
[3J Z+(c:T),!IILEX.'(P DOUNTIL Q)R' 

The function RPTUNTIL is developed in the same way, that is, first by defining 
one case, e.g. where the function P is dyadic and Q is a predicate: 

[OJ Z+L(P RPTUNTIL Q)R 
[1J +0 IF Q Z+R 
[2J Z+L(P RPTUNTIL Q)L P R' 

and then generalizing it to cover the other cases by using !II: 

[OJ Z+L(P RPTUNTIL Q)R A P is a function, Q is a test 
[1J !II'+O IF Q '.(':;' IF 3;1!DNC'Q'),'Z+R' 
[2] Z+!IILEX,'(P RPTUNTIL Q)',LEX.' P R' 

[OJ 
[1] 

321 

3.902 

XXXX 

Z+SMALL R 
Z+5>tR 

2~RPTUNTIL SMALL ~l13 

.5xRPTUNTIL SMALL 999 

'X',RPTUNTIL 'XXXX' " 

A returns I if first item less than 5 
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illustration : Repetitive Prompts 

The simplest way of combining N separate input strings from a terminal into an 
N-item vector is 

!I!"Np'I!I' 

Entry of multiple input lines is usually associated with prompts and a simple 
function which provides these is 

[OJ Z+ASK R 
[1J I!I+R 
[2J Z+( p ,R).j.1!I 

ASK 'NAME=' 
NAME=ALF 
ALF 

ASK can be used with each to obtain answers to an ordered succession of 
prompts: 

ASK" 'NAME= ' , NO= ' 
NAME=ALF 
NO=49 

ALF 49 

Now define a function NULL (that is null line) for use as a stopping condition: 

[OJ Z+NULL R 
[1J Z+O€pR 

and apply DOUNTIL to issue repeated prompts: 

ASK DOUNTIL NULL 'ENTER=' 
ENTER=A 
ENTER=BB 
ENTER=CDE 
ENTER= 

A BB CDE 

ASK DOUNTIL '99' 'ENTER=' 
ENTER=7 
ENTER=33 
ENTER=99 

7 33 

The derived function ASK" can be used in conjunction with DOUNTIL to repeat 
chains of prompts until a complete cycle of null responses has been given: 
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ASK "DOUNTIL NULL • NAME = • • NO= • 
NAME=ABC 
NO=1 
NAME=XYZ 
NO=2 
NAME = 
NO= 

ABC XYZ 2 

illustration : Iterative solution of non-linear equations 

APL2 IN DEPTH 

RPTUNTIL provides a method of solving by iteration equations which can be 
expressed in the form y = fey) for which there is a convergent solution from the 
given start value. An example is y = cos(y) which was first discussed in 
Exercise 5b4c. EPS is a global variable which defines a stopping tolerance, e.g . 
. 00001 in the present case. 

[0] Z+cos X 
[1] Z+20X 

[0] Z+NEAR X 
[1] A n.b. function P is defined in RPTUNTIL 
[2] Z+EPS>IX-P X 

COS RPTUNTIL NEAR 1 
0.73909 

For Newton-Raphson iteration define another two operators and a variable con
taining the step size: 

[0] Z+(P NEWTON)X 
[1] Z+X-(P X)+P DERIV X 

[0] Z+(P DERIV)X 
[1] Z+«P X+AX)-P X)+AX 

AX+.OOOOS 

To solve the equation x(x-l)=2 define 

[0] Z+F X 
[1] Z+2-XxX-1 

The roots to which the Newton-Raphson process converges for different starting 
values are then given by: 

(F NEWTON)RPTUNTIL NEAR 
2 

(F NEWTON)RPTUNTIL NEAR -1.2 
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illustration : Non·llnear function fitting 

The primitive function III performs least squares fits of linear functions. With 
only a modest amount of programming it can also be used to fit a much wider 
range of non·linear functions as the present illustration shows. Suppose that it is 
required to fit a function of the form 

y = a + b.exp( ·cx) 

to the data 

X+V56 
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

Y+V57 
4.745 4.6532 4.6036 4.0066 4.0864 4.5687 3.806 3.1908 

3.0976 3.6759 3.8764 3.4329 4.1062 3.0066 2.6309 
3.6943 3.2929 2.4183 3.4453 3.1949 

Define the function FN in which C stands for coefficients: 

[OJ Z+C FN X 
[1J Z+C[1J+C[2Jx*-C[3JxX 

Partial derivatives with regard to the coefficients are estimated by defining an 
operator: 

[OJ Z+CCF PDERIV X)N;T 
[1 J II N is index of coefficient whose partial derivative is required 
[2J Z+«CC+TxN=lpC)F X)-C F X)fT+6X3[NJ 

Intervals can be defined for each coefficient separately as the rightmost part of 
the above function line implies: 

6X3 
0.00001 0.00001 0.00001 

Fitting is carried out using domino: 

[OJ Z+X(F FIT Y)C 
[1J Z+C+CY-C F X)IIl~[1J(cC)CF PDERIV X)-lPC 

Make a first guess at the coefficients: 

CO+3 4 .4 

and then run the function FIT: 

X FN FIT Y CO 
3.2267 1.4653 0.21462 

Now use RPTUNTIL to iterate towards a solution with prescribed accuracy. A 
stopping criterion might be that all the coefficients are within EPS of the pre· 
vious iteration. This is described by the function ALLNEAR which uses the P and 
L of RPTUNTIL: 
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[0] Z+ALLNEAR C 
[1] A n.b. function P and argument L are defined in RPTUNTIL 
[2] Z+A/EPS>IC-C P L 

EPS 
0.00001 

A small amendment must be made to FIT: 

[0] Z+A(F Fit Y)B 
[1] Z+R+(Y-R F L)~~[1](cR)(F PDERIV L)-lpR 

which now has dummy arguments A and B since it is the derived function 
(F Fit Y) which is the left operand of RPTUNTIL and Land R are the argu
ments of RPTUNTIL. The iterated solution is: 

x FN Fit Y RPTUNTIL ALLNEAR 3 4 .4 
2.8907 1.9388 0.1186 

To obtain a trace of the steps towards convergence add 0+ at an appropriate 
point in RPTUNTIL: 

[2] Z+tLEX.'(P RPTUNTIL Q)O+'.LEX.' P R' 

and rerun: 

X FN Fit Y RPTUNTIL ALLNEAR 3 4 .4 
3.2267 1.4653 0.21462 
3.0237 1.7732 0.077427 
3.0959 1.7285 0.12798 
2.8934 1.9353 0.11731 
2.8909 1.9387 0.11862 
2.8907 1.9388 0.1186 

To confirm the correctness of Fi t define Y so that the exact result is known in 
advance: 

Y+5+2xliIr-.2xX 
X FN Fit Y RPTUNTIL ALLNEAR 3 4 .4 

3 4 0.4 
5.1016 1.8463 0.2698 
5.0267 1.9624 0.18631 
5.0021 1.9973 0.20003 
5 2 0.2 

5.6.2 Conditional and Alternative Function Execution 

Operators are a natural mechanism for writing functions which avoid 
anticipatable APL errors. The first illustration below gives an operator which 
restricts function execution to selected parts of the data only. The second illus
tration gives a technique for providing alternative monadic functions. 
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Illustration: Data Filtering 

The operator UNLESS in Section 5.6.1.2 was used to to apply a left operand 
selectively. A disadvantage of this is that the predicate function may generate an 
error as in: 

V55+(1 2.5 'XYZ')('ABC' 3 12) 
DISPLAY V55 

r+------------------------------~ 

I r·+·------------, 
I I 
I I 1 
I I 

r+--, 
2.5 IXYZI 

L-...J 

I LE:----------' 

r+·----------..., 
I r+--, 
I IABCI 
I L-...J 

3 12 

L€ _________ ~ 
L€ ________________________ ~ 

[OJ Z+SMALL R 
[1J Z+5>tR 

1+UNLESS SMALL"V55 
DOMAIN ERROR 
SMALL[1J 
[1J Z+5>tR 

A technique which overcomes this is to to apply compression to R in order that P 

be applied only to those items which satisfy a predicate Q such as NUM: 

[OJ 
[1] 

Z+NUM R 
Z+2=21(0 ' ')€€tOpcR 

Next an operator FILTER is defined: 

fl returns I if R entirely numeric 

[OJ Z+L(P FILTER Q)R;T fl P is a function, Q a predicate 
[1J Z+tR«T/R)+L P(T+Q"R)/R) 

1+FILTER NUM .... V55 
2 3.5 XYZ ABC 3 13 

1 (+FILTER SMALL")FILTER NUM .... V55 
2 3.5 XYZ ABC 4 12 

Another possible filter function is INTEGRAL: 

[OJ 
[1 J 

Z+INTEGRAL R 
Z+R::LR 

fl returns I if R is numeric and integral 
fl n.b. must be match, = won't do! 

1<+FILTER INTEGRAL")FILTER NUM .... V55 
2 2.5 XYZ ABC 4 13 
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Illustration: The ELSE Operator 

It can sometimes be convenient to be able to provide alternative monadic func
tions depending on some user-defined condition which need not necessarily be 
error-producing. This facility is provided by the operator ELSE: 

[0] Z+L(P ELSE Q)R 
[1] +L1 IF"'L 
[2] +0 Z+P R 
[3] L1:Z+Q R 

(A~2)(TELSE+)A+2 3 4 
234 

(A~2)(TELSE+)-A+2 3 4 
2 0.3333 0.25 

FI P and Q are functions 
FI Q is executed if L false 
FI otherwise P is executed 

The rightmost sets of brackets are not necessary in the above: 

(A~2)tELSE+-A+2 3 4 
2 0.3333 0.25 

but they help clarify the meaning. 

Exercises 5e 

1. Write an operator ONLYS which extends ONLY by recursion so that Q is a 
vector of indices, e.g. 

M+2 3p\6 
M+ONLYS«2 2)(2 3))100 

1 2 3 
4 105 106 

2. a. Rewrite the operator TRACE of Section 5.3 using III and the function LEX. 

b. Extend the operator SIMPLE in Section 5.4 so that it deals with both 
monadic and dyadic derived functions, e.g. 

4Simple«9 5 6)(7 4))(8 5 3) 

should return the value « 2 3 1) (2 1)) (3 2 1). 

3. Rewrite the dyadic composition operator COMP1 of Section 5.2.2 so that it 
deals with both monadic and dyadic derived functions, that is pComp1 p -T is 
equivalent to p - p -T, and 2£Comp1 £ ··T is equivalent to 2£·· £ ··T. 
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4. An alternative to the Newton-Raphson technique for finding a root of f(x) = 0 
is known as the Secant method. The algorithm consists of starting with a pair of 
values Xo and xI one on each side of the root, and identifying the co-ordinate, 
x2, of the point where the line joining the points (xo,f(xo)) and (xI,f(xI)) crosses 
the x-axis. Take whichever of the intervals (xO,x2) and (x2,xI) contains the root, 
and repeat. Under suitable conditions x2 will converge to the root. 

Using RPTUNTIL and NEAR write an operator analogous to NEWTON together 
with any requisite operators or functions so that 

F SECANT RPTUNTIL NEAR V 

where V is an appropriate two-item vector of co-ordinates, delivers the required 
root of F. 
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5.6.3 LEVEL 

In first-generation APL, the result of adding two vectors of equal length is 
unambiguous: 

1 2+1 3 
2 5 

Nesting allows two other possibilities for adding simple vectors. 

(a) 1 2 (b) 1 3 

I I I I 
1--3 1-3 1-2 1-2 

Assume that an operator LEVEL has been written to distinguish these cases: In 
(a) the vector 1 3 is nested (i.e. at level 1) and is added to each item of vector 
1 2: 

1 2+LEVEL(0 1)1 3 
2 4 3 5 

In (b) the vector 1 2 is nested (level 1) and added to each item of vector 1 3: 

1 2+LEVEL(1 0)1 3 
2 3 4 5 

The operator LEVEL might be written 

[0] 

[1] 
[2] 

[3] 

Z+L(P LEVEL Q)R 
+L1 IF o;eDNC'L' 
+0 Z+(P MONLEV Q)R 

L1:Z+L(P DYALEV Q)R 

A P is a function, Q indicates depth 
A branch if dyadic 
A P monadic 
A P dyadic 

where MONLEV and DYALEV deal with the monadic and dyadic cases respec
tively. 

[0] Z+(P MONLEV Q)R A Q is a non-negative integer 
[1] +L1 IF Q~:R 
[2] +0 Z+P MONLEV Q"R 
[3] L1:+0 Z+P R 

In line 1 of DYALEV, the requested depths Q are compared with the actual 
depths of the arguments Land R - if either is lower a level of nesting is removed 
by each with, if necessary, an enclose of the other. 

[0] Z+L(P DYALEV Q)R A Q a 2-item vector of non-negative integers 
[1] +(2~Q<:"L R)CASE(O,LOO)(1,L01)(2,L10)(3,L11) 
[2] LOO: +0 Z+L P R A depth reached for both Land R 
[3] L01:+0 Z+(cL)P DYALEV Q"R A depth reached for L but not R 
[4] L10:+0 Z+L P DYALEV Q"cR A depth reached for R but not L 
[ 5] L 11 : Z+ L P DYALEV Q" R A depth reached for neither L nor R 

[0] 
[1] 

Z+L CASE R 
Z+(L: ....... R)/2:l .. R 

A L is an expression, R a vector of 2-item 
A vectors, each is (value of L, label) 
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The next two subsections use the same nested vector T. T is used as its name 
rather than V in order to emphasize that it is to be thought of as modelling a 
tree. 

::T+(6(S 3))(1 2) 
3 

DISPLAY' T 

I r----""" 
I I r+--, 
I I 6 IS 31 
I I L..---I 
I L£ ___ ........ 
L£ _________ ~ 6 S 

T 
I 

3 

o 
I 

level 3 

level 2 

level 1 

2 level 0 

Since every subtree extends to level 0, it is necessary to insert extra levels in the 
case of non-uniform trees. 



186 

5.6.3.1 LEVEL with Monadic P 

In the following illustrations the function CI> is taken as P. 

DISPLAY Cl>LEVEL 0 T 
r--------------~ 
I r+ r--, 
I I r+--, 11 21 
I 16 18 31 L...--.J 
I I L...--.J 
I LE:--------' 
LE:-----------------' 

DISPLAY Cl>LEVEL 1 T 

I ,. r+--, 
I I r--, 1211 
I 16 1381 L...--.J 
I I L",--.J 
I LE:-__ ..... 

LE:-----------------' 
DISPLAY Cl>LEVEL 2 T 

I r· I r--, 
I I r--, 11211 
I I 18 31 6 I L...--.J 
I I L...--.J I 
I LE: I 
LE:-----------------' 

DISPLAY Cl>LEVEL 3 T 

Ir--, 
I 11 21 
IL...--.J 

I 
I 

r· 
I r--, 
I 6 18 31 
I L...--.J 
LE:-__ ..J 

LE:-----------------' 

APL2 IN DEPTH 
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5.6.3.2 LEVEL with Dyadic P : 

DISPLAY T 
r> 
I r+-----, 
I I 
I I 6 
I I 

r--' 
18 31 
1-.---1 

I LE:-----' 
LE:--------~ 

DISPLAY 1 2+LEVELCO O)T 
r+--------~ 

I ro+>-----. 
I I 
I I 7 
I I 
I LE:------.I 

r--' 
13 41 
1-.---1 

LE:--------~ 
DISPLAY 1 2+LEVELC1 1)T 

r> 
I r> r+--, 
I I r--' r+--, 12 41 
I I 1781 1951 1-.---1 
I I 1-.---1 1-.---1 

I LE:--------' 
LE:----------~ 

DISPLAY 1 2+LEVELC1 2)T 
r+--------------~ 

I r ... ·------. 
I I 
I I 7 
I I 
I LE: ___ ---J 

LE:---------~ 
DISPLAY Cc1 2)+LEVELCO 1)T 

r> 
I ro+>---------, 
I I 
I I 7 
I 1 
I LE:--------.... 

rt 
1 r--' 
1 12 31 
1 1-.---1 

r--' 
13 41 
1-.---1 

LE:------~ 
LE:--------------------~ 

187 
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DISPLAY (c:1 2)+LEVEL( 2 2)T 
r+ 
I r > r> 
I I r---, r"---' I r"---' r"---' 
I I 17 81 19 51 I 12 31 13 41 
I I L...----l L...----l I L...----l L...----l 

I L€ L€ 
L€ 

DISPLAY 1 2+LEVEL(1 O)T 
r> 
I r r> 
I I r"---' r+ I r"---' r---, 
I I 17 81 I r-'-' r---, I 12 31 13 41 
I I L...----l I 19 101 14 51 I L...----l L...----l 

I I I L...----f L...----l L€ 
I I L€ 
I L€ 
L€ 

DISPLAY 1 2+LEVEL(0 3)T 
r> 
I r> r+ 
I I r> r---, I r> r---, 
I I I r"---' 12 31 I I r---, 13 41 
I I I 7 19 41 L...----l I I 8 110 51 L...----l 

I I I L...----l I I L...----f 

I I L€ I L€ 
I L€ L€ 
L€ 

DISPLAY (c:1 2)+LEVEL(0 2)T 

r • 
I r r 
I I r> r+ I r---, r---, 
I I I r"---' I r---, I 12 31 13 41 
I I I 7 19 41 I 8 110 51 I L...----l L...----l 

I I I L...----l I L...----f L€ 
I I L€ L€ 
I L€ 
L€ 

Exercises Sf 

The following exercises assume that a name is a vector of character vectors, e.g. 

NAME+ 'JAMES , 'ANTHONY' 'LAMB' 

and that NAMES is a vector of eight names, viz: 
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::.NAMES 
JAMES ANTHONY LAMB 
HUGH WILLIAM JONES 
FRED SMITH 
ARTHUR WILLIAM DALY 
HAMISH MCGREGOR 
ANDREW DAVID WILLIAM MASON 
SEAN EWAN MCTAVISH 
ANDREW WILLIAM MASON 

1. For a single name, e.g. NAME define a function SHORTEN which replaces the 
forenames with a vector of initials so that the name becomes a two-item vector 
e.g. 

SHORTEN NAME 
JA LAMB 

2. Define a predicate ISW2 which returns 1 if the second name is WILLIAM and 
another predicate SCOTCH which returns 1 if the first two characters of the 
surname are MC. 

3. Print a matrix with one row per name which contains everyone's names 
except those whose second name is WILLIAM. 

4. Print a similar matrix of names in which all except Scotsmen have their fore
names abbreviated to their initials. 

5. Define a function LENGTHEN to allow the printing of a matrix of everyone's 
names in which Scotsmen have the first two characters of their surnames 
replaced by MAC. 

6. Print a matrix of names with one row per name in which all surnames are 
aligned. 
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Summary of Functions used in Chapter 5 

Section 5.2 

HTD 
DTH 

Exercises Sa 

FROMDEC 
TODEC 

Section 5.4 

PATH 
ENLIST 

Exercises 5b 

PRODUCT 
JOIN 
CHALL 
CODIFY 
MEAN 
MEDIAN 

Section 5.5.3 

SPIRAL 

Section 5.5.4 

EXPAND 

Section 5.5.6 

AD 
GRAD 
MIDPT 

Exercises 5c 

SUBMAT 
PATIN 

Section 5.6.1.2 

SOMECHAR 
FRACTNL 

Section 5.6.1.3 

LEX 

Section 5.6.1.4 

ALIKE 
ASK 
NULL 

convert hexadecimal to decimal 
convert decimal to hexadecimal 

convert to decimal from arbitrary number base 
convert to arbitrary number base from decimal 

find path to given item in a vector 
selective enlist 

description of x / 

description of ,/ 
change all occurrences 
encrypt a character string 
mean of a numeric vector 
median of a numeric vector 

co-ordinates of spiral in Euclidean plane 

function form of expand operator 

absolute difference 
gradient of line in Euclidean co-ordinates 
midpoint of line in Euclidean co-ordinates 

returns all sub matrices of a given shape in matrix 
matches a binary pattern in a binary matrix 

returns 1 if some character items in right argument 
returns 1 if right argument non-integral 

auxiliary function for writing ambi-valent operators 

returns 1 if all items in vector equal 
returns answer following prompt 
predicate is-null-vector 



5. Using Operators 

COS 
NEAR 
ALLNEAR 
NUM 

Section 5.6.2 

INTEGRAL 
DECODE 

Section 5.6.3 

CASE 

Exercises Sf 

SHORTEN 
ISW2 
SCOTCH 
LENGTHEN 

191 

cosine 
auxiliary function to provide stop for operator RPTUNTIL 
generalization of function NEAR 
returns I if all items in array numeric 

returns 1 if array numeric and all items integers 
deciphers an encrypted character string 

case statement 

replaces names with initials 
predicate is-second-name WILLIAM 
predicate is-first-two-characters MC 
replaces MC with MAC 
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Summary of User-defined Operators in Chapter 5 

Section 5.1 

COM 
SEE 
ALONG 
TABLE 

Section 5.2 

RED 
LRED 
HEX 
HEXE 
NEXT 
CON SEC 

Exercises Sa 

BASE 
ROO TOP 

Section 5.3 

COMP1 
COMP2 
TRACE 

Section 5.4 

SIMPLE 

Exercises 5b 

POWER1 
POWER2 
POLISH 

Section 5.5 

UNSCAN 
UNDO 

Section 5.6 

ONLY 
ONLYS 
UNLESS 
UP TO 
DOUNTIL 
RPTUNTIL 
NEWTON 
DERIV 

commutes arguments 
dynamic trace (monadic functions) 
progresses functions left to right 
outer product of vector with itself 

reduction along axis 
reduction from left along axis 
hexadecimal arithmetic 
HEX each 
joins matrices of non-compatible shapes 
indices of start points of sequences 

arithmetic in arbitrary base 
pth. root 

function composition: L P Q R 
function composition: P L Q R 

dynamic trace (ambi-valent functions) 

makes non-pervasive functions penetrate to simple items 

function to the power: (L P) repeated Q times starting with R 

function to the power: (P R) repeated Q times starting with L 

polishes a matrix by subtracting from rows and columns 

reverses scan using R P L 

reverses scan using L P R 

function executed only for given index 
function executed only for given indices 
function applied to items unless they satisfy predicate 
function applied item by item until value found in argument 
function applied without feedback 
function applied with feedback 
root-finding by Newton-Raphson iteration 
derivative of function 



5. Using Operators 

PDERIV 
FIT 
FILTER 
ELSE 
LEVEL 
MONLEV 
DYALEV 

partial derivatives of function coefficients 
operator for fitting non-linear functions 
processes data only if predicate true 
alternative monadic functions dependent on user condition 
applies function at given depth levels of argument(s) 
monadic case of LEVEL 
dyadic case of LEVEL 
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6 
Advanced Modelling and Data Structures 

Chapter 3 interrupted the discussion of APL features in order to give some 
simple applications in which nested arrays prove their worth. This chapter per
forms a similar role, but the applications are now typical problems which arise 
in Operational Research and involve more sophisticated uses of the techniques 
of the previous chapters. The problem situations involved are designed to illus
trate how some commonly occurring data structures can be modelled in APL2, 
and how APL2 programs can be built round them in a systematic fashion. 

6.1 Trees Without Keys 

There are many different ways to build tree-like data structures of which three 
will be discussed in the first three sections of this chapter. The simplest sort of 
tree is a hierarchical one in which nested arrays are used to model subordinate 
relationships, e.g. the organization of a department: 

BOrs 

ABLE 

DEAD EASY 

is described by the following nested array: 
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HT.'BOSS'('ABLE' 'CLOT'('DEAD' 'EASY') 'FOP'(c'GAS'» 
DISPLAY HT 

~ 
I r~ ~ 
I IBOSSI I ~ r+---, r~ r+-. I 
I L---.J I IABLEI I CLOT I I r+---, r+---, IFOPI I r+-. 
I I L---.J L---.J I I DEAD I I EASY I L-..J I IGASI 
I I I L---.J L---.J I L..-J 

I I L€ L€ 
I L€ 
L€ 

Notice that it is necessary to enclose the character string when a member has 
only one subordinate. 

A straightforward enlist is of little value ... 

€HT 
BOSSABLECLOTDEADEASYFOPGAS 

... however the selective enlist function defined in Section 5.4 can give us an 
overall namelist ... 

[0] Z.L ENLIST R 
[1] +L1 IF L~=R 
[2] +0 Z ••• /L ENLIST"R 
[3] L1IZ.cR 

DISPLAY 1 ENLIST HT 
r+--------------------------------------------~ 

I ~ r+---, r+---, r~ r~ r-. r-. 
I IBOSSI IABLEI I CLOT I I DEAD I I EASY I IFOPI IGASI 
I L---.J I--J I--J I--J I--J L..-J L..-J L€ ____________________________________________ ~ 

... or select members at either of the top two levels: 

DISPLAY 2 ENLIST HT 
r> 
I ~ r~ ~ ~ r~ I 
I IBOSSI IABLEI ICLOTI I ~ r~ IFOPI I ~ 
I L---.J L---.J L---.J I I DEAD I IEASYI L..-J I IGASI 
I I I--J L---.J I L..-J 

I L€ L€ 
L€ 

6.2 Trees with Keys 

Another way in which a tree structure can be used to store data in a way which 
reflects its internal relationships involves using keys. 

Suppose a hierarchical data set is structured as shown in the diagram below 
in which numbers represent keys, "*,, represents a subtree which is expanded at 
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the next lower level and letters of the alphabet represent data which might in 
practice be very large. 

A tree is thus a vector with an even number of items - odd numbered items are 
the unique numeric keys, even numbered items are either subtrees or data items. 
The functions to be discussed concern the structure of and navigation through 
trees and are entirely independent of the data which the trees are used to store. 
The tree sketched above could be modelled as 

TREE+1(2(S'B'6(10'E')7'C')3(S'D'9(11'F'12'G'))4'A') 

It is worth spending a few moments to accustom oneself to the relationship 
between the drawn form of the tree and the DISPLAYed version: 

DISPLAY TREE 
r+ 
1 r+ i 
1 1 r+ i r 1 
I I 2 i r+----, I 3 I r+ I 4 A I 
1 1 1 5 B 6 110 E 1 7 C I 1 S D 9 111 F 12 GI - 1 
1 1 1 L+---.J - 1 1 L+ 1 
1 1 LE: LE: 1 
1 LE: 
LE: 

Consider the problem of finding the path to a given key L. The nature of this 
tree structure guarantees that it is not necessary to provide for "level-breakers" 
(i.e. empty vectors - see Section 1.3.1). If it is further assumed that L must be 
present in R and that the key values do not occur in the data then the initial 
PATH algorithm of Section 5.4 is sufficient. 
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[0] Z+L PATH R;T 
[1] .L1 IF 1~=R 
[2] .0 Z+10 

A L a numeric scalar, R a tree 
A branch if R nested 

APL2 IN DEPTH 

[3] L1:T+(L£-£-R)11 
[4] Z+T,L PATH T~R 

A identify subtree T at current depth .. 
A .. then find path within subtree T 

7 PATH TREE 
225 

Several paths may be found in one action: 

DISPLAY (8 9 10)PATH-cTREE 

~'-----------------------. 
I r > I r·------, ~ I 
11241112431122411 
I I-.-------.J L~-------.J L~ I L£ ________________________ ~ 

The function PATH is the inverse of pick: 

(8 9 10 PATH-cTREE)~-cTREE 
8 9 10 

6.2.1 Finding Ancestors 

Define the ancestors of a key as those keys which precede it in a path. For a 
given key L the function ANCIN (short for "Ancestor in") which has a very 
similar structure to PATH provides a trace of all ancestors from a given key. 

[0] Z+L ANCIN R;T 
[1] .L1 IFNL£R 
[2] .0 Z+10 
[3] L1:T+(L£-£-R)11 
[4] Z+R[T-1],L ANCIN T~R 

8 ANCIN TREE 
1 3 

10 ANCIN TREE 
126 

DISPLAY (110)ANCIN-cTREE 
r+ 
I .-e-. r-. ~, r·, ~--, ~--, 

I 101 11 I 11 I 11 I 11 21 11 21 
I I-.J L~J I-.J L~J L~---1 1-.---1 
L£ 

A identify subtree T at current depth .. 
A .. then find ancestor within subtree T 

r+--, ~ ~ r> 
11 21 11 31 11 31 11 2 61 
1-.---1 1-.---1 L~---1 I-.-------.J 
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6.2.2 Subtrees 

A subtree can be defined as the portion of a tree which is identified by a key. A 
subtree is therefore completely determined by the path to its key. Adding one to 
the lowest order item of the path produced by the PATH function yields the path 
to the subtree itself. The function STPATH produces the path to the subtree: 

[OJ Z+L STPATH R 
[1J Z+«-pZ)t1)+Z+L PATH R 

from which the subtree itself may be obtained using pick: 

[OJ Z+L SUBT R 
[1J Z+(L STPATH R)~R 

Hence subtrees can be exhibited: 

DISPLAY 2 SUBT TREE 
r+ I 
I r+---, I 
I 5 B 6 110 E I 7 C I 
I L+----l - I 
LE; 

DISPLAY 9 SUBT TREE 
r+ I 
111 F 12 GI 
L+ I 

6.2.3 Eliminating and Swapping Subtrees 

The function CUTFROM removes the subtree associated with key L. 

[OJ Z+L CUTFROM R 
[1 J Z+tR«L STPATH R)~R)+ctO 

DISPLAY 2 CUTFROM TREE 
r+ 
I r+ I 
I 1 I I I r> I 
I I 2 I r9, I 3 I r+ I 4 A I 
I I I 101 I I 8 D 9 111 F 12 GI - I 
I I I L...J I I L+ I 
I I LE;----l LE; I 
I LE; 
LE; 

SWAP exchanges the subtrees associated with keys L [2 J and L [1 J: 
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[0] Z+L SWAP R;T 
[1] Z+R 
[2] T+L STPATH"c:Z 
[3] Z+((~T)~"c:Z)+T~"c:Z 

DISPLAY 7 3 SWAP TREE 

r" 
1 r-
1 1 1 r+ 
1 1 2 1 r---' r" 
1 1 1 5 B 6 110 EI 7 1 
1 1 1 L+----l 1 
1 1 1 1 
1 1 1 LE: 
1 1 LE: 
1 LE: 
LE: 

6.3 Binary Trees 

r* 
8 D 9 111 

L+ 

I 
F 12 GI 

I 
1 

3 C 4 A 1 
- 1 

1 
1 

1 
1 

This section discusses another form of tree structure in which there are no keys 
but instead the structure depends on properties of the data, together with the 
order in which it is entered into the tree. A tree consists of three components, a 
root, a left subtree, and a right subtree. Data resides only at the roots of trees 
and subtrees, and as in the previous section it can always be made into a scalar 
however complex the actual structure of the data which resides there. The left 
and right subtrees may be empty, and it is natural to represent empty trees as 
10. Subtrees repeat the structure of trees so that a typical three-level tree is: 

I 
I 

~ 
10 

10 ~ 
10 10 

A simple binary tree operation involves storing names which are ordered alpha
betically The first name is entered at the root, the next name goes to the left or 
right depending on whether it comes before or after the root word in the 
alphabet. Subsequent names enter at the root and traverse the tree going left or 
right at every subtree root until an empty subtree is found where the incoming 
name can be inserted. Thus if FRED. ANNE and DAVID are to be entered in 
that order the resulting tree is 
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DAVID 

If they are entered in the reverse order the tree is 

~ 
ANNE FRED 

Basic operations on binary trees are get-root (modelled by 2::>TREE), get-Ieft
subtree (tTREE), get-right-subtree (3::>TREE), and is-empty (O=pTREE). At a sec
ondary function level, useful functions are those which carry out operations like 
insert, search, make-tree, count-leaves, count-comparisons and is-equivalent. 

Since binary trees are recursively defined, it is not surprising to find that 
recursive functions are a natural way of building up secondary functions. 

First consider binary trees which have simple numeric scalars as the root 
values. The function INS implements an algorithm for inserting an item into a 
tree which uses "multi-level recursion," that is INS calls AINS which calls 
AAINS which calls INS. 

To insert an item L into a tree R first test to see whether R is empty, in which 
case the result is ( \ 0) L ( \ 0 ) : 

[0] Z+L INS R 
[1] +L1 IF O=pR 
[2J +0 Z+L AINS R 
[3] L1:Z+R L R 

FI L is item, R is tree 
FI return (\ 0) L ( \ 0) if tree empty 
FI else ... 

AINS deals with the non-empty case and tests first whether L matches the root, 
in which case there is nothing to do. 

[0] Z+L AINS R 
[1] +L1 IF L:2::>R 
[2] +0 Z+L AAINS R 
[3] L1:Z+R 

FI return tree unchanged if L matches root 
FI else ... 

AAINS deals with the general case where L does not match the root in which 
case L is inserted on the left or right depending on whether it is less than or 
greater than the root: 

[OJ Z+L AAINS R 
[1 ] 

[2] 
[3] 

+L1 IF L>2::>R 
+0 Z+(cL INStR),1~R 

L1:Z+(2tR),cL INSt~R 

FI go right if L > root 
FI else go left 
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The INS function also allows a binary tree to be constructed from scratch by 
successive insertions using a right argument of lOS. As in the previous section it 
is worth spending a few moments observing the relationship between the tree 
diagrams given above and the DISPLAYed versions. 

r 
I r&1 
I 101 
I L...J 
LE: 

r • 
I re, 
I 101 
I L...J 

I 
I 
LE: 

r· 
I r&1 
I 101 
I L...J 

I 
I 
I 
I 
LE: 

TR1.6 INS 10 
DISPLAY TR1 

r&1 
6 101 

L...J 

TR1·S INS TR1 
DISPLAY TR1 

r 
6 I r&1 r&1 

I 101 S 101 
I L...J L...J 
LE: 

TR1.7.s INS 9 INS TR1 
DISPLAY TR1 

r 
6 I r 

I I r&1 r&1 S 
I I 101 7.5 101 
I I L...J L...J 

I LE: 
LE: 

r 
I r&1 r&1 
I 101 9 101 
I L...J L...J 
LE: 

The above code suggests a further recursive function which converts a vector 
into a binary tree: 

[0] Z+MAKET R 
[1] +L 1 IF O=P. R A if empty argument return empty tree 
[2] +0 Z. ( t R >INS MAKET 1-1- R A else insert first into tree 

A made from remainder 
[3] L1:Z.10 

so that 

TR1+MAKET 7.5 9 S 6 

also constructs the tree shown in the last example. 
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6.3.1 Trees with non-simple Scalar Nodes 

One of the strengths of APL2 is that if the underlying structure is now changed 
to one of arbitrary complexity the upgraded code for the INS and ISIN func
tion sequences is virtually unaltered. To be specific, suppose that the node items 
are identified by keys which are taken to be the first item of nested vectors such 
as V61, V62, and V63 below. 

DISPLAY V61 
r+ 
I r· I r+ I 
I I BLACK I -1>11 1501 1250 
I 115 2001 
I 129 501 
I L~ I 

LIE 

DISPLAY V62 
r+ 
I r+---, ,.e, 
I 2 IWHITEI 101 0 
I I I L~J 

LIE 

DISPLAY V63 
r· 
I r+--, r+ 
I 3 I GRAY I I r---, r I 300 
I L.........----l I 16 1501 -I> 9 251 
I I ~-----' 118 1251 
I I ~ I 

I LIE 
LIE 

The only change necessary is to the function t.t.INS where firsts must be added 
to the conditional clause: 

[1J +L1 IF (tL»t2~R 

A tree to store the three nested arrays P, Q and R is constructed by: 

TR2+MAKET V61 V62 V63 

The resulting tree TR2 has the shape 

I 
V62 

I 
V61 
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6.3.2 Searching Binary Trees 

A function sequence which tests whether or not an item is present in a tree has 
an almost identical recursive structure to that of the functions INS, ~INS, and 
~~INS used for inserting items into a tree. 

[0] Z+L ISIN R 
[1] +L1 IF O=pR 
[2] +0 Z+L ~ISIN R 
[3] L1:Z+0 

[0] Z+L ~ISIN R 
[1] +L1 IF L=2~R 
[2] +0 Z+L ~~ISIN R 
[3] L1:Z+1 

[0] Z+L ~~ISIN R 
[1] +L1 IF (tL»t2~R 
[2] +0 Z+L ISINtR 
[3] L1:Z+L ISINt~R 

7.5 ISIN TR1 
1 

7 8 9 ISIN"cTR1 
o 1 

fI L is item, R is tree 
fI return 10 for empty tree 
fI else ... 

fI see if root matches 
fI else ... 

fI try right if L>root 
fI else go left 

(V61 V62 1s)ISIN"cTR2 
110 

Of course, if the data items are simple numeric scalars, ISIN can be achieved 
much more simply by LuR, e.g. 

7 8 9uTR1 
o 1 1 

Depth-first scan, that is a traverse of the tree which penetrates each path as 
deeply as possible into the tree before retreating and fanning out to other nodes, 
is also achieved trivially through enlist: 

€TR1 
6 7.5 8 9 

and the number of leaves in a tree by 

p€TR1 
4 

6.3.3 Selective Enlist with Binary Trees 

Walking the tree TR2 in a depth-first fashion poses a problem, because enlist is 
once again too heavy-handed for the job, and steam rollers everything down to 
scalar level: 
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£TR2 
BLACK 11 150 15 200 29 50 1250 2 WHITE 0 3 GRAY 6 150 9 25 

18 125 300 
P£TR2 

32 

The selective enlist function ENLIST defined in Section 5.4 provides the 
ability to scan the items in TR2 in depth-first fashion while retaining the simple 
(Le. non-nested) structures, namely character and numeric arrays: 

DISPLAY 8t1 ENLIST TR2 
r+ 
I r9, r+--., r+ I r9, r+--., 
I 101 I BLACK I "'11 1501 1250 101 2 IWHITEI 
I L....J I 115 2001 L~J I I 

I 129 501 
I L.... I 

L£ 
DISPLAY U1 ENLIST TR2 

r+ 
I re, r9, r+---, r+--., r+ I re, 
I 101 0 101 3 I GRAY I 16 1501 '" 9 251 300 101 
I L....J L....J ~ L....-------l 118 1251 L....J 
I L.... I 

L£ 

6.3.4 Data-equivalent Binary Trees 

Different binary trees are data-equivalent if they contain the same data but in a 
different tree structure. The differences arise only on account of the items being 
inserted in different orders. For example: 

DISPLAY MAKET 4 5 6 
r O 

I r+o-------------------, 
I I r'+o---------, 
I I I r9, 
I I I 101 
I I I L....J 

r9, 
4 101 

L....J 
I I L£ ____ ---' I L£ _____________ ~ 

re, 
6 101 

L....J 

L£ ___________________________ ~ 

DISPLAY MAKET 6 4 5 
r+ 
I r+ r" 
I I re, re, 5 I re, re, 
I I 101 4 101 I 101 6 101 
I 1 L....J L....J I L....J L....J 
I L£ L£ 
L£ 

whose corresponding tree structures are 
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4 

and 

4 6 

The (t 0) s representing empty left and right sub-trees are generated by line 
[3] of MAKET. 

Simple enlist is adequate to compare trees for data-equivalence, for example: 

(£MAKET 4 5 6);£MAKET 6 4 5 

This test applies equally to trees with complex underlying structure: 

(£MAKET V61 V62 V63);£MAKET V62 V63 V61 
1 

6.3.5 Alternative Comparisons 

If the root items are not numeric scalars it is necessary to replace > in 66INS 
and 66ISIN with a function GT which determines in context an appropriate 
definition of "is greater than." For example, if the root items are character
string vectors an appropriate GT function which exploits dyadic grade-up is 

[0] Z+L GT R 
[1] +L1 IF O~tOpL 
[2] +0 Z+(tL»tR 

A use collating sequence if L non-numeric 
A else use> 

[3] L1IZ+>/DAV.~L R A test for L before R in alphabetic order 

Only some relatively small details of the 66INS and 66ISIN functions need 
be changed. If the right argument of MAKET has only one name, this must be 
enclosed. 

[0] Z+L 66Ins R 
[1] +L1 IF(tL)GT 2~R 
[2] +0 Z+(cL InstR).1~R 
[3] L1IZ+(2tR).cL Inst<l>R 

[0] Z+L 66Isin R 
[1] +L1 IF(tL)GT 2~R 
[2] +0 Z+L IsintR 
[3] L1:Z+L Isint<l>R 
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These functions together with Ins, Isin, ~Ins, ~Isin, and Maket suitably 
adapted cover all the three types of data which have been considered. 

TR3+'FRED' Ins 10 
DISPLAY TR3 

r+·---------------, 
I r61 r+-----, re, 
I I 0 I I FRED I I 0 I 
I L~J L----J ~J L£ ______________ ~ 

DISPLAY TR3+Maket 'DAVID' 'ANN' 'FRED' 
r+--------------------------------------------~ 

I r+------------------------------~ 
I I r61 r+~ 
I I 101 IANNI 
I I ~J L--....J 

I I 
I I 

r+---------------. 
I re, 
I 101 
I ~J 

r~ re, 
I DAVID I 101 
'--__ --', L~J 

L£ ______________ ~ 
I L£ ______________________________ ~ 

r+-----, r61 
I FRED I 101 
L----J L~J 

L£ ____________________________________________ ~ 

'ANN' 'JANE' Isin"c:TR3 
1 0 

£TR3 
ANNDAVIDFRED 

Exercises 6a 

1. Amend the Isin sequence of functions so that Isin counts the number of 
comparisons which are made in searching for L. 

2. Write a function sequence SUB, ~SUB, ~~SUB, similar to the ISIN sequence, 
which obtains the subtree in R at node L. 
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6.4 Networks 

This section considers closed structures with arcs and nodes. Two nodes can be 
identified as source and sink respectively, and the other nodes are intermediate 
nodes. This structure typically models a situation where something like a fluid or 
an electric current flows from the source to the sink. Flow may only occur in 
one direction along each arc and the arcs also have capacity constraints, that is 
each has a maximum flow which it can sustain. A frequent objective is to maxi
mize the total overall flow from source to sink, so that for example the 
maximum amount of oil is conveyed through a system of pipes from the oil well 
to the refinery. 

The so-called PERT diagrams form another family of networks in which arcs 
represent activities. Numbers on the arcs represent the times to perform them, 
and the nodes are states achieved as the result of the completion of the activities 
represented by their incoming arcs. 

A specimen network is the following where the values marked on the arcs are 
the maximum flows along them: 

9 11 20 .. 5 .. 

6 ... 7 16 1'12 .. .. 
.. .. 
2 8 

14 19 11 

.. 3 .. 6 .. 7 

Such a network may be represented by an N by N matrix where N is the 
number of nodes, and the value in the cell (r,c) is the directed distance between 
node r and node c. No connection between the nodes rand c is represented by 
a 0 in the cell (r,c). Thus the matrix representing the above network is 

NET 
0 9 14 0 0 0 0 
0 0 6 7 11 0 0 
0 0 0 2 0 19 0 
0 0 0 0 16 8 0 
0 0 0 0 0 0 20 
0 0 0 0 12 0 11 
0 0 0 0 0 0 0 
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Arcs are represented by non-zero entries, and it may be assumed without loss of 
generality that for networks with a single sQurce and a single sink, the former is 
node 1, and the latter the node represented by the last row/column. Thus the 
first column and the last row of such a network matrix must consist of all zeros. 

Typically network matrices are sparse and an alternative space-saving repre
sentation of such matrices is a two-item nested vector, the first item of which is 
a binary matrix of node connectivities NETC, and the second item is a vector 
NETV of the values of the non-zero items in row-major order. The above 
network could then be represented by the nested vector 

NETC NETV 
0 0 0 0 0 9146711 2 19 16 8 20 12 11 
0 0 1 1 0 0 
0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 1 0 1 
0 0 0 0 0 0 0 

Conversion to the NET form is achieved by FULNET NETC NETV where FULNET 

is 

[OJ Z+FULNET R 
[1J Z+tR 
[2J «,Z)/,Z)+2~R 

6.4.1 The Vector of Paths through a network 

Consider the problem of determining all paths from the source node to the sink 
node. Assume that L is a binary connectivity matrix such as NETC representing 
a network without loops, and that the items of R represent node numbers. These 
paths can be determined by the pair of linked recursive functions OUTFROM and 
ROOT: 

[OJ Z+L OUTFROM R 
[1J "'L1 IF O=p,R f'I branch if list of nodes empty 
[ 2 J ... 0 Z+ (L ROOT l' R) • L OUTFROM 1.j. R f'I process first node and recurse 
[ 3 J L 1 : Z+ R f'I stopping action 

[OJ Z+L ROOT R;T 

[1J "'L1 IF~v/T+L[R;J 

[2J "'0 Z+R,"L OUTFROM T/11'pL 
f'I branch if all-zero row found 
f'I join current node to all lower 
f'I stopping action [3J L1:Z+R 

Line [2 J of OUTFROM says 

(L ROOTtR), 

L OUTFROM HR 

f'I find all the paths which proceed downwards from 
the first item in R, and join them on to ... 

f'I ••• ditto for the rest of R 

ROOT then tests whether the all-zero row (Le. the sink) has been found, and if 
not joins the current node R to each of the trees which spread out from the 
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nodes to which R is connected. OUTFROM thus corresponds to processing "along" 
a vector of nodes, ROOT to processing "down" from a single node . 

• [lO]NETC OUTFROM 1 
2 345 7 
2 3 4 6 5 7 

1 2 3 4 6 7 
1 2 3 6 5 7 
1 2 3 6 7 
1 2 4 5 7 

2 4 6 5 7 
1 2 4 6 7 

2 5 7 
3 4 5 7 

1 3 4 6 5 7 
3 4 6 7 

1 3 6 5 7 
1 3 6 7 

The • [ l 0] transforms the vector of paths to a one-column matrix which makes 
it easier to read. 

If a network has loops, it is necessary to carry into the recursion a list of 
nodes encountered so far. In the following version of OUTFROM and ROOT, L is a 
two-item vector where the first item is the enclosure of the connectivity matrix, 
e.g. NETC, and the second item is the list of nodes encountered so far. 

[0] Z+L OUTFROML R 
[1] +L1 IF O=p.R 
[2] +0 Z+((L.tR)ROOTLtR).L OUTFROML 1+R 
[3] L1 :Z+R 

[0] Z+L ROOTL R;T 
[1] +L1 IF~v/T+RD[1]tL 

[2] +0 Z+R."L OUTFROML(T/ltptL)~1+L 
[3] L1:Z+R 

The without in the second line of ROOTL inhibits the processing of nodes which 
have already been visited. 

For networks without loops, such as NETC, the only difference between 
OUTFROM and OUTFROML is that the left argument of the latter must be 
enclosed, that is 

(cNETC)OUTFROML 

is equivalent to 

NETC OUTFROM 

An example of a network with loops is 
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+ 

+ + + 

t 

+ 

for which the connectivity matrix NETL and the result of OUTFROML are the fol
lowing: 

NETL 
0 0 0 0 
1 0 1 0 
0 0 0 1 1 

0 0 0 
0 o 0 0 0 

(cNETL)OUTFROML 1 
1 2 345 1 2 3 5 1 2 4 5 

6.4.2 Parallel computation along paths 

The function PV (Path to Value) converts a path R into a vector of arc values 
lying on the path. The argument L is the matrix representation of a network. 

[0] Z+L PV R 
[1] Z+(2./R)O-cL 

NET PV 1 2 3 
9 6 

The expression + /NET PV 1 2 3 4 5 6 7 thus adds arc values along the 
first path in NETC OUTFROM 1. 

Another way of looking at this problem is to extend the functions OUTFROML 

and ROOTL to obtain ADDFROM and ADDROOT in which the addition of values 
along the arcs takes place as the arcs are encountered: 
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[OJ Z+L ADDFROM R 
[1J +L1 IF O=p,R 
[2J +0 Z+(L ADDROOTtR),cL ADD FROM 1~R 

[3J L1:Z+R 

[OJ Z+L ADD ROOT R;T 
[1J +L1 IFNv/T+RO[1JL~0 

[2J +0 Z+( (R, "T) O"cL) + (cL)ADDFROM··T+T/t tpL 
[3J L11Z+0 

E:NET ADDFROM 1 
53 57 36 66 45 52 56 35 40 52 56 35 65 44 

Addition could be replaced by other scalar dyadic functions, e.g. the minimum 
function. An alternative to defining another pair of functions is to convert 
ADDFROM and ADDROOT to operators, thereby generalizing the function + in the 
middle of line [2 J of ADDROOT. This amendment also requires adjustment to 
line [3 J of ADD ROOT to contain the identity item of the function P. 

[OJ Z+L(P FROM)R 
[1] +L1 IF O=p,R 
[2J +0 Z+(L(P FROOT)tR),c(P FROM) 1 ~R 
[3J L1IZ+R 

[OJ Z+L(P FROOT)R;T 
[1J +L1 IFNv/T+RO[1JL~0 

[2J +0 Z+((R,"T)O"cL)P(cL)(P FROM) ··T+T/ltpL 
[3J L1:Z+P/lO 

NET 
0 9 1'+ 0 0 0 0 
0 0 6 7 11 0 0 
0 0 0 2 0 19 0 
0 0 0 0 16 8 0 
0 0 0 0 0 0 20 
0 0 0 0 12 0 11 
0 0 0 0 0 0 0 

E:NET +FROM 1 
53 57 36 66 45 52 56 35 40 52 56 35 65 44 

E:NET LFROM 1 
222 6 6 7 7 7 9 2 2 2 12 11 

The minimum of the sums along all paths is the shortest path-length through 
the network, and the maximum of these sums is the longest path-length, which 
in the case of a PERT network is that of the critical path. There is an analogy 
here with inner products, in that one function is performed along all paths, and 
the reduction of a second function provides a quantity of interest. This leads to 
the definition of an operator NIP standing for "Network Inner Product." 

[OJ Z+(P NIP Q)R 
[1J Z+P/E:R(Q FROM)1 

Thus 
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LNIP+NET 
35 

is the length of the shortest path of NET, and 

rNIP+NET 
66 
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is the length of the longest/critical path of NET. Assuming that node 1 is the 
source, the network may be taken as the single argument of the operator ROUTE: 

[OJ Z+(P ROUTE)R 
[1J Z+((R~O)OUTFROM 1)[(Z=P/Z)/lpZ+€R+FROM 1J 

LROUTE NET 
1 246 7 1 346 7 

is then the shortest path or paths of NET, and 

rRouTE NET 
123 6 5 7 

is the longest/critical path or paths of NET. 

6.4.3 Assignment of Flows 

Suppose that the values on the arcs of a network matrix represent non-negative 
capacities and that as flow is sent down a path from source to sink the capaci
ties on the component arcs in the route are reduced by the amount of the flow. 
As before it is assumed that the source and sink nodes are the first and last 
nodes respectively. First MSUB (standing for "Matrix Subtract") is constructed 
which has a network matrix as its left argument and whose right argument is a 
two-item vector, the first item of which is the row and column indices of an arc 
and the second an amount to be subtracted from the capacity of that arc. For 
example NET and the matrix resulting from subtracting 2 from NET[ 1 ; 2 J 
shown below. 

NET (NET MSUB( 1 2)2) 
0 9 14 0 0 0 0 0 7 14 0 0 0 0 
0 0 6 7 11 0 0 0 0 6 7 11 0 0 
0 0 0 2 0 19 0 0 0 0 2 0 19 0 
0 0 0 0 16 8 0 0 0 0 0 16 8 0 
0 0 0 0 0 0 20 0 0 0 0 0 0 20 
0 0 0 0 12 0 11 0 0 0 0 12 0 11 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Using the technique of CHANGE in Section 1.4.2 leads to 

[OJ Z+L MSUB R 
[1J (ZDL)+((Z+tR)DL)-2~R 

[2J Z+L 

are 

The function PSUB standing for "Path Subtract" extends this to an entire path. 
R is the path catenated to the amount to be subtracted. 
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[0] Z.L PSUB R 
[1] +L1 IF 1=ptR 
[2] +0 Z.(L MSUB(c:2HR) ,2:>R)PSUB 1 O","R 
[3] L1:Z.L 

so to subtract 2 from the path 1 2 3 4 5 7 use as right argument the 
path/amount vector (1 2 3 4 5 7) 2: 

NET PSUB( 1 2 3 4 5 7)2 
0 7 14 0 0 0 0 
0 0 4 7 11 0 0 
0 0 0 0 0 19 0 
0 0 0 0 14 8 0 
0 0 0 0 0 0 18 
0 0 0 0 12 0 11 
0 0 0 0 0 0 0 

The function FLUX has as its right argument a vector of paths, and progressively 
subtracts the maximum possible flow along each path in turn. The maximum 
flow along any path is the minimum capacity of the arcs in that path. 

[0] Z.L FLUX R 
[1] +L1 IF O=pR 
[2] +0 Z.(L PSUB(ctR),L/L PVtR)FLUX HR 
[3] L1:Z·L 

NET FLUX NETC OUTFROM 1 
0 0 0 0 0 0 0 
0 0 0 4 11 0 0 
0 0 0 0 0 1 0 
0 0 0 0 11 8 0 
0 0 0 0 0 0 3 
0 0 0 0 0 0 5 
0 0 0 0 0 0 0 

Finally the function ALLOC combines the roles of OUTFROM in detecting paths, 
and FLUX in sending flow along them and also attempts to maximize the total 
flow through the network. It is known that the objective of achieving a 
maximum network flow is best promoted by sending flow as far as possible 
along paths with small numbers of arcs. Therefore the vector of paths corre
sponding to a network should thus be ordered from least to greatest numbers of 
arcs, which is achieved by the function UPG. 
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[OJ Z+ALLOC R 
[1] Z+R FLUX UPG(R~O)OUTFROM 

[OJ Z+UPG R 
[1 J Z+R[.t.£p "RJ 

ALLOC NET 
0 0 0 0 0 o 0 
0 0 6 7 2 0 0 
0 0 0 0 0 7 0 
0 0 0 0 14 8 0 
0 0 0 0 0 0 8 
0 0 0 0 11 0 0 
0 0 0 0 0 0 0 

6.4.4 Minimum Spanning Tree 

An undirected network is one in which the arcs do not have directions associ
ated with them and thus its matrix 'representation must be symmetric. A 
minimum spanning tree of such a network is a tree structure which includes all 
the nodes and for which the sum of total arc values is a minimum. This might 
for example be of interest to an oil prospecting company anxious to minimize 
the total length of pipeline needed to connect a given set of oil wells. Such a 
structure may not look like a tree in nature or in the sense of the previous dia
grams, however all that is required to give the tree property to an assembly of 
arcs and nodes is that it be connected, and that the number of arcs is one less 
than the number of nodes. NET may again be used as an example, but since it 
now represents a graph with undirected nodes it must be made symmetric by 

SYMNET+NET+Is!NET 
SYMNET 

0 9 14 0 0 0 0 
9 0 6 7 11 0 0 

14 6 0 2 0 19 0 
0 7 2 0 16 8 0 
0 11 0 16 0 12 20 
0 0 19 8 12 0 11 
0 0 0 0 20 11 0 

To develop a minimum spanning tree algorithm, a tree is modelled as a vector of 
two-item vectors representing arcs, each of which consists of a left and a right 
node. If the network is the left argument L of a function MST which returns the 
minimum spanning tree as a vector of arcs, then the number of items in the 
result of MST must be -1 HpL by the definition of a tree. 

The principle of the algorithm is that at any intermediate stage of con
structing the tree, the nodes fall into two disjoint sets, U which includes the 
nodes used so far, and v those not used so far. The next arc to be added to the 
tree is the lowest-value arc (LVA) connecting these two sets, or the first such arc 
if there are several of equal value. The right node of the lowest-value arc is the 
new node to be added to the set U and removed from the set V. 
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Assume that a function LVA has been defined which produces the lowest
value arc for a network L and a node-list R corresponding to the set u. The 
revised tree after one step of the process is 

(cT+L LVA R). II the new arc (enclosed) joined to ... 
L MST II ... the algorithm applied to ... 
R II ... the previous node list with ... 
• 1 +T II ... the right node of LVA appended. 

The process starts with any node and stops when (p R) = t p L, i.e all the nodes 
are included in the node list. The complete function is: 

[0] Z+L MST R;T 
[1] +L1 IF (pR)=tpL 
[2] +0 Z+(cT).L MST R.1+T+L LVA R 
[3J L1:Z+tO 

The problem has been reduced to that of calculating the LVA which in turn con
sists of finding the row and column indices of the first occurrence of the 
minimum non-zero value (MNZ) in the set L[U;VJ. This is given by 

tONES T=MNZ/.T+L[U;VJ 

where ONES is the auxiliary function defined in Section 4.2.1, which returns a 
vector of co-ordinate pairs corresponding to the position of the 1 s in a binary 
matrix: 

[OJ Z+ONES R 
[1J Z+c[1J1+(pR)T-1+(.R)/tx/pR 

and MNZ returns L L R unless either is zero in which case it returns the other. 

[oJ Z+L MNZ R 
[1J +L1 IF v/O=L.R 
[2J +0 Z+LLR 
[3J L1:Z+L+R 

These lead to the definition of LVA as 

[OJ Z+L LVA R;T;U;V 
[1J Z+L[U;V+(ttpL)~U+€RJ 

[2] Z+(tONES Z=MNZI.Z)O"U V 

II branch if either L or R is zero 

The minim urn spanning tree of SYMNET is then 

SYMNET MST 1 
1 2 2 3 3 4 4 6 2 5 6 7 

The value of MST, i.e. the sum of the values of its constituent arcs, is 

[OJ Z+MSTV R 
[1] Z++/(R MST 1)O"cR 

MSTV SYMNET 
47 



6. Advanced Modelling and Data Structures 217 

6.4.5 Precedence and Reachability 

A further problem which might arise in modelling the sort of networks which 
have been the subject of the preceding Sections is finding how far it is possible 
to travel in a given number of steps. 

t 

For a graph such as the above which may be cyclic and contain self-looping 
nodes, and whose connectivity matrix is L, the precedence matrix answers the 
question what nodes may be reached in exactly R steps, where R is a non
negative integer. The reachability matrix answers the question what nodes may 
be reached in R steps or less. The precedence matrix is an extension of the 
connectivity matrix. The two are equivalent when R = 1, and R = 0 denotes 
the identity matrix. Calculation of the nodes which can be reached at the next 
step provides in line [2 J of the function PREC an application of the v. A inner 
product. 

[OJ Z+L PREC R 
[1] +L1 IF R=O 
[2J +0 Z+(L PREC R-1lv.AL 
[3J L1:Z+IDtpL 

[OJ Z+ID R;T 
[1] Z+To.=T+1R 

For one node to be reachable from another in R steps requires either R-step pre
cedence or that reach ability has already been achieved in fewer steps, hence line 
[ 2 J of REACH: 

[OJ Z+L REACH R 
[1J +L1 IF R=O 
[2J +0 Z+(L PREC RlvL REACH R-1 
[3J L1:Z+IDtpL 

The matrix CM is the connectivity matrix of the above graph and is used to illus
trate the calculation of precedence and reach ability matrices. 
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CM 
0 0 0 0 
1 0 0 0 0 
0 1 0 0 0 
0 0 0 1 1 
0 0 0 0 

CM PREC 1 CM REACH 1 
0 0 0 0 1 1 0 0 0 1 
1 0 0 0 0 1 1 0 0 0 
0 1 0 0 0 0 1 0 0 
0 0 0 1 1 0 0 0 1 1 
0 1 0 0 0 0 1 0 0 1 

CM PREC 2 CM REACH 2 
0 0 0 0 1 1 0 0 1 
0 0 0 0 1 1 1 0 0 1 
1 0 0 0 0 1 1 0 0 
0 1 0 1 1 0 1 0 1 1 
1 0 0 0 0 1 1 0 0 1 

CM PREC 3 CM REACH 3 
1 0 0 0 0 1 1 0 o 1 
0 1 0 0 0 1 1 0 0 1 
0 0 0 0 1 1 1 1 0 1 
1 1 0 1 1 1 1 0 1 1 
0 0 0 0 1 1 1 0 0 1 

Exercises 6b 

1. Write a function MAKENET to construct a connectivity matrix of dimensions 
given by the left argument for a vector of co-ordinate vectors, e.g. 

4 4 MAKENET (1 2)(2 2)(3 1)(3 4) 

should return 

o 1 0 0 
o 1 0 0 
1 0 0 1 
o 0 0 0 

2. For the connectivity matrix NUL how would use APL2 to answer the 
questions: 

(a) To how many nodes are there routes from nodes 1,2,3 and 41 
(b) How many nodes can be reached in exactly three steps from node 31 

3. How would you display the minimum spanning tree of SYMNET in Section 
6.4.4 with the values of the arcs displayed beneath them thus: 

1 2 2 3 3 4 4 6 2 5 6 7 
9 6 2 8 11 11 1 
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4. The table below gives the distances between each of a set of five towns: 

0 6 7 9 3 
6 0 5 2 4 
7 5 0 1 8 
9 2 0 3 
3 4 8 3 0 

What is the minimum length of a road network which ensures that every town is 
reachable from every other? 
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Summary of Operations used in Chapter 6 

Trees 

Section 6.2 
PATH 

Section 6.2.1 

ANCIN 

Section 6.2.2 

SUBT 
STPATH 

Section 6.2.3 
CUTFROM 
SWAP 

Section 6.3 
INS 
MAKET 

Section 6.3.2 

ISIN 

Section 6.3.5 
GT 

Exercises 6a 

SUB 

Networks 

Section 6.4 
FULNET 

Section 6.4.1 

OUTFROM 
ROOT 
OUTFROML 
ROOTL 

path to item in tree with keys 

ancestors of item in tree with keys 

subtree determined by given key 
path to subtree 

removes subtree 
exchanges subtrees 

inserts in binary tree 
makes binary tree 

tests for item in binary tree 

generalized "greater than" 

finds subtree at given node in binary tree 

network conversion from nested vector to simple matrix 

all paths from a vector of nodes 
all paths from a given node 
enhancement of OUTFROM to deal with loops 
enhancement of ROOT to deal with loops 
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Section 6.4.2 

PV 
ADDFROM 
ADD ROOT 
FROM 
FROOT 
NIP 
ROUTE 

Section 6.4.3 

MSUB 
PSUB 
FLUX 
ALLOC 
UPG 

Section 6.4.4 

MST 
ONES 
MNZ 
LVA 
MSTV 

Section 6.4.5 

PREC 
REACH 
ID 

Exercises 6b 

MAKENET 

converts path to vector of values along arcs 
sums along all paths from a vector of nodes 
sums along paths from given node 
operator extension of ADD FROM 
operator extension of ADD ROOT 
"network inner product" applicable to e.g. PERT network 
path satisfying e.g. shortest or longest path criterion 

subtract value from single item in matrix 
subtract value from each arc in path 
subtracts values progressively from vector of paths 
allocates maximum flow through network 
sorts paths in order of increasing length 

minimum spanning tree 
co-ordinate pairs of 1 s in binary matrix 
minimum non-zero value of a pair of scalars 
lowest value arc connecting two sets of nodes 
value of minimum spanning tree 

precedence matrix for a directed graph 
reachability matrix for a directed graph 
identity matrix 

constructs connectivity matrix from vector of co-ordinates 



Appendix A. Solutions to Exercises 

Solutions 1 a 

1. The expressions are DISPLAYed below, in each case followed by the proto
type. 

a. • ABC' 17.6 
r· r+---, 
I r+---, I I 
I IABCI 17.6 L--J 
I L--J 
L€ ____ ---' 

b. 2 3p2 2 4 

c. 

r· I 
.j.2 2 41 0 
12 2 41 
L.-.---I 

2 3 4p2 2 4 

rr+ I 
H2 2 4 21 0 
112 4 2 21 
114 2 2 41 
II I 
112 2 4 21 
112 4 2 21 
114 2 2 41 
LL.-. I 

d. 2 4p' ABC' •• • • • 6' ( t 2) ( to) 9 6 
r+ I r+---, 
.j. r+---, r61 I I I 
I IABCI I I 6 I L--J 
I L--J L...J I 
I r+---, r61 I 
I 11 21 101 9 6 I 
I L.-.---I L.-.J I 
L€ I 
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e. 'A' 7.5 5 '5' 

r'" I 
IA 7.5 5 51 
L+ 

f. 0 3p5 

r"'-' 
<1>0 0 01 0 
L.v-----l 

g. 0 3p' A' 

r--' 
<I> I 
L-...J 

h. 0 3p 5 'A' 

r"'-' 
<1>0 0 01 0 
L.v-----l 

i. 3 Op 5 'A' 
re, 
",,01 0 
101 
101 
L.vJ 

j. o 3p(5 'A' )4 

r'" 
<I> r"'"--, r--' r"'"--, 
I 10 I 10 I 10 I 
I L+~ L+~ L+~ 
L.,; 

k. 0 3 p ( 'B' 6) ( 5 ' A ' ) 

I • 
<l>r--'~~ 
I I 01 I 01 I 01 
I L+~ L+~ L+~ 
L.,; ________________ ~ 

1. 0 Op ( 'B' 6) ( 5 ' A' ) 

10 r"'"--, 
<I>~ 101 
I I 01 L+~ 
I L+~ 
L.,; ___ ---I 

APL2 IN DEPTH 

r"'"--, 
10 I 
L+~ 
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o 2 Op ( 'B' 6) (5' A' ) m. 
rre'-----, 

<1>+ r+--, 
II I 01 
I I L+----I 

II r+--, 
II I 01 
I I L+----I 
LL€ __ ---I 

2. Op c 2pn and cO 2pn respectively, where n is any numeric scalar. 

3. [0] 
[1] 

[2] 

Z+DIS R 
'SHAPE:'(pR)'DEPTH:'(:R) 
Z+DISPLAY R 
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4. The value parts of solutions are given in a condensed form of the DISPLAY 
format 

shape depth 
a. (2 3 4) (6 7) 2 2 
b. ( (4 5) 3) ( 'APL' ) ( (4 5) 3 ) 3 3 

5. (a) is the item-wise product of two two-item vectors; (b) is a three-item vector 
in which Bx5 is sandwiched between two occurrences of A. 

6. (i) d and i (ii) e and i 

7. It gives a DOMAIN ERROR because (pA) 1 is not simple and therefore is not a 
valid left argument to p. 

8. (i) All the same. 
(ii) (c) is in general different, (a) and (b) are the same. 

(iii) (a) and (c) are the same, (b) is different. 

9. a. The real part of the product of a complex number and its conjugate is the 
square of the magnitude of the argument. 

b. [0] 
[1] 

Z+QUAD R:T 
Z+-(R[2]+T.-T+«R[2]*2)-x/4,R[1 3])*.5)+2xR[1] 

~9 11 o .0QUAD 1 1 1 
-0.5 -0.86603 
-0.5 0.86603 

U+QUAD 1 2J3 4J-1 

Use decode to check the solutions, e.g. 

U[1]11 2J3 4r1 
8.8818E-16J-2.2204E-16 
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Solutions 1 b 

1. (i) No 
(ii) (b),(c),(d) and (f) are the same, namely the three-item depth two vector 

(1 2)(10 20)(3 4), 
(a) is the simple vector 1 2 10 20 3 4, (e) is the three-item depth three 

vector 
(c:1 2)(c:10 20)(c:3 4), 

2. (a) has five items, (b) has four. 

3. For conciseness answers are given in a condensed notation in which A is to be 
read as the array 2 3p t6. 

a. (A) 3 d. (10xA)30 
b. (-A)-3 e. (A 3) ((2xA)6) 
c. (A+1)S f. (A*2)9 

4. 2 3pc:3 Sp' APL2 IS GREAT' 

or 2 3pc:~' APL2' , IS' 

5. (Z X)+" (t3) 
DISPLAY Z+Z,c:X 

1 r ... ·---. 
1 11 2 31 
1 L....----.J 
L£ ___ ---' 

DISPLAY Z+Z,c:X 

r· 
1 I· 1 ... r ... ·--.... 
1 11 2 31 11 2 31 
1 L....----.J L....----l 
L£ _______ ---' 

1 • 

(Z X)+"(t3) 
DISPLAY Z+Z X 

1 re, r· 1 
1 1 1 11 2 31 
1 L...J L....----l 
L£ _____ --J 

DISPLAY Z+Z x 

1 • 
1 1 ... ·------..., 

'GREAT' 

lire, r· 1 
1 1 1 1 11 2 31 

11 2 31 
L....----.J 

1 1 L...J L....----l 
1 L£ _____ ---' 
L£ ___________ ~ 

((3xA)9) 



Appendix A. Solutions to Exercises 

None of the four answers are the same. 

6. (a) and (c) are the same, namely 

r'" IXI 
L.J 

(b) and (d) are the same, namely 

r+----, 
Ire, 
I I I x 
I L.J -
LE:----' 

7. (a) is the simple vector t3. 
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(b) is a simple two by three mixed matrix, with a first row of blanks and a 
second row t 3. 

(c) is a simple one-item vector consisting of the character 'X'. 
(d) is an empty matrix of shape 2 o. (z 'X' is a two-item vector and the 

shape component of its first item is 0, which is brought from the inner to the 
outer structure.) 

8. a .• ' ABC' 'DE' is a two-item vector of character strings, 
1£ ' ABC' 'DE' is a five-item vector 'ABCDE'. 

b .• (1 3 p , ABC' ) 'DE' is a two-item vector, whose first item is a character 
matrix and whose second is a character string. 

1£(1 3p'ABC') 'DE' is identical to E:'ABC' 'DE'. 

9. a. Calendar for month - weeks horizontal: 

[0] Z+SD MONTH DY;HD 
[1] ADY: number of days in month 
[2] A SD: integer indicating start day of month 
[3] HD+' SUN' 'MON' 'TUE' 'WED' 'THU' 'FRI' 'SAT' 
[q] Z+7 7pHD.(SDp' '),(lDY).20p' • 

b. Calendar for month - weeks vertical: 

tQ3 MONTH 31 
SUN 5 12 19 26 
MON 6 13 20 27 
TUE 7 1q 21 28 
WED 8 15 22 29 
THU 2 9 16 23 30 
FRI 3 10 17 2q 31 
SAT q 11 18 25 

c. Calendar for as a character array: 
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.3 MONTH 31 
SUN MON TUE WED THU FRI SAT 

1 2 3 4 
5 6 7 8 9 10 11 

12 13 14 15 16 17 18 
19 20 21 22 23 24 25 
26 27 28 29 30 31 

Notice that formatting results in a decrease in depth: 

:"(3 MONTH 31)(.3 MONTH 31) 
2 1 

d. Vector of start days for each month: 

[0] Z+LEAP START_DAY JAN:D 
[1] D+DAYS+12+0.LEAP 
[2] Z+-1~71+\JAN.D 

DAYS 
31 28 31 30 31 30 31 31 30 31 30 31 

o START_DAY 2 
255 1 361 4 0 250 

e. Calendar for year shaped by quarters: 

SD 
255 1 361 402 5 0 

YEAR+SD MONTH·· DAYS 

APL2 IN DEPTH 

pYEAR A use ::)YEAR to display as column of months 
12 

QTERLY+4 3pYEAR 

Solutions 1 c 

1. In both cases the problem can be approached either by partial enclosure, or 
by axis-qualified multiplication. For (a) define 

A+2 3 4p1 
pD+c:[2]A 

111111111111 
111111111111 

2 4 

Alternative solutions are 

::)[2]Mxc:[2]A and Mx[1 3]A 

For (b) observe 

pD+c:[1 3]A 
1111 1111 
1111 1111 

3 

The alternative solutions are 

1 1 1 1 
1 1 1 1 
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~[1 3]Vxc[1 3]A, Vx[2]A and +\[2]A 

2. For economy of space only shape and depth are given in full. 

shape depth equivalent shape depth 

a. 10 2 
b. (3 4) 
c. (3 4) 
d. 10 2 
e. 4 2 
f. 3 2 
g. 10 2 
h. 10 2 
i. (3 4) 

Solutions 1d 

to: 

~M13 

cM13 
c~M13 

M13 

j. 
k. 
1. 
m. 
n. 
o. 
p. 
q. 

(3 4) 2 
4 2 
3 2 
3 2 
2 2 
2 2 

10 2 
10 2 

1. For economy of space solutions values are given in an abridged notation. 

value shape depth 
a. E 3 2 
b. 2 3P16 (2 3) 1 
c. 1 10 0 
d. ( E) 10 3 
e. RANI< ERROR 
f. 2 3P16 (2 3) 
g. RANI< ERROR 
h. RANI< ERROR 
i. 2 10 0 
j. E 3 2 
k. (2 3p16) 10 2 
1. ( 2 3p16)3 2 2 
m. RANI< ERROR 
n. same as k 
o. same as k 

2. a. 3 3 3 b. 1 c.3 333 d. 3 3 
e.3 f. 3 1 g. 3 h. 3 3 

3. a. 1 and 3 
b. 1 and 3 have shape 10; 2 has shape 1 1 

4. a. 2 and 4 
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b. In 1, 3, 5 and 7 the shape of the index does not equal the rank of M11. In 
the case of 6 (1 2) does not match the rank of the second axis of M11. 
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5. a. 20[1]M 
5 6 7 8 shape = 4 

b. 20[2]M 
2 6 10 shape = 3 

c. (c2 1)0[1]M 
5 6 7 8 
1 2 3 4 shape = 24 

d. (c2 1)0[2]M 
2 1 
6 5 

10 9 shape = 32 

6. a. 20 [1]A b. 30 [3]A c. 2 30[1 3]A 

7. a. (1++\T=' ')cT+'SPARE ME A DIME' 
SPARE ME A DIME 

b. (T;e" )cT+.M.' , 

c. €+\-(1+0;eV)cV 

8. Cardinal to Ordinal 

[0] Z+ORDINAL N;T;I 
[1] AN z simple positive integer 
[2] Z+II5N 
[ 3 ] T+ ' st ' , nd ' , rd ' , th ' 
[4] I+'123'\-1tZ 
[5J +('1';et-2tZ)/OK 
[6] I+4 
[7J OKz 
[8] Z+Z.I;:,T 

Solutions 1e 

1. (a) Yes, value is 3. (b) No, depth is 2. 

2. a. 1.j.-1.j.(~' 'f"V)/v+" .v.' , 

b. ;:,(c[2]M)~c(t<l>pM)p' , 

d. 2 4 30A 

(Note: If M is non-nested (b) is equivalent to (v /M;e' ') ,eM.) 

3. The results of applying the three collating sequences are: 

APL2 IN DEPTH 
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(M17[CS1AM17;])(M17[CS2AM17;])(M17[CS3AM17;]) 
ACE ACE ace 
BAD ace bad 
BED BAD ACE 
Bed BED bed 
CAB BeD BAD 
DAD bad Bed 
ace bed BED 
bad CAB dad 
bed DAD CAB 
dad dad DAD 

4. a. (i) ~(c[2]M)[OAVAM] (ii) M[DCSAM;] 

b.(D ~Z IF(ZlZ)=lpZ+(c[2]M)[OAVAM] 
(ii) M[ (1. v r2;efM[ I;]) /I+DCSAM; ] 

5. A matrix of 1 s of shape pC. 

6. a. ((1+R-L)p1)~Rp1 

b. (1+-C)<I>(1+-W)e((1+R-L)p1)~Rp1 

7. (2 2 2p1)~A13 

8. a. 

ABC* 
*ABC 

[0] 
[1] 

[2] 

Z+REPL R 
Z+R 
((' '=€Z)/€Z)+'*' 

REPL 2 4p'ABC 

b. In line 2 replace I I =z with o=z and I * I with c I N/A I 

Repl 2 4p1 2 3 0 0 
1 2 3 N/A 

N/A 1 2 3 

Solutions 2a 

1.a. DISPLAY pV23 
,-, 
121 
L...J 
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b. DISPLAY p"V23 
r+ 
I r+, r+, 
I 131 121 
I L,.J L~J 

LE: 

c. DISPLAY p·· .. V23 

r+ 
I r+ r+ 
I I r91 re, re, I r+, r+---, 
I I 101 101 101 I 131 12 31 
I I L,.J L,.J L,.J I L~J L,.---.J 

I LE: LE: 
LE: 

d. DISPLAY pV24 

r+, 
121 
L,.J 

e. DISPLAY p "V24 
r+ 
I re, r+, 
I 101 121 
I L,.J L,.J 
LE:------' 
f. DISPLAY p" "V24 
r+ 
I r----, r+'----..., 
1 r+, 1 r~ 
1 131 I 131 
1 L,.J I L,.J 
1 LE:----.J LE:--------' 
LE:-----------~ 

2. a. (24 25 26) 
b. (9 11 13) 

C. 3 4 5 6 7 8 

d. 12 6 7 8 
e. 12 21 

3. (t"V) +' DA' , or in general use OAF. 

4. An expression for the weighted moving average is: 

+/"'(cW)x(pW) ./V 

5. I-f. 2-b. 3-d. 4-a. 5-g. 6-c. 

APL2 IN DEPTH 
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Solutions 2b 

1. a. 2 3p"W 
AB DEF 

b. 2 3p "c:w 
ABC DEFG ABC DEFG ABC 

c. 2 3pc:"W 
ABC DEFG ABC 
DEFG ABC DEFG 

d. (c:2 3)p"W 
ABC DEF 
ABC GDE 

e. (c:2 3)p"c:W 
ABC DEFG ABC 
DEFG ABC DEFG 

f. 2 3p .... W 

AA BB CC DDD EEE FFF GGG 

2. a. (2 4 1 3)(1 3 2)(1 2 3) 

3. (?"3pc:100p6)1"6 

4. a. Suggested comments are: 

[0] 
[1 ] 

[2] 
[3] 

[4] 
[5] 

[6] 

[7] 
[8] 

Z+L PRT3D R;PLA;ROW;COL 
Z+c:[2 3]A 
Z+' ',[1]'" ',[2]"Z 
PLA+L[1],"2=>L 
ROW+'\',L[3],4=>L 
COL+L[5],6=>L 
Z+(c:ROW),"(c:COL),[1]"Z 
Z+PLA,[1.5]Z 
Z+,[10]Z 

b. 2 3 c. 3 1 2 

A make data into a vector of planes 
A prefix rows and columns with blanks 
A construct plane titles 
A construct row titles 
A construct column titles 
A attach row & col titles to each plane 
A attach plane titles 
A arrange as a single column 

b. The shape/depth table for Z at the various stages of execution is: 

- p p 

[1] 2 2 ( 3 4)(3 4) 
[2] 2 2 (4 5)(4 5) 
[6] 3 2 (5 6)(5 6) 
[7] 3 2 2 3(5 6) 

3(5 6) 
[8] 3 2 2 3 

(5 6) 

3 
(5 6) 
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c. The descriptor L [ 1] is joined to each heading and so retains its identity as a 
single unit. It should therefore remain enclosed and so a cross-section (indexing) 
is required. The headings, however, are joined individually, hence pick is appro
priate. 

d. (i) The following changes should be made to TITLES: 

TITLES[2]+c'PLA1' 'PLA2' 
TITLES[4]+c'ROW1' 'ROW2' 'ROW3' 
TITLES[6]+c'COL1' 'COL2' 'COL3' 'COL4' 

(ii) No changes need be made to PRT3D. 

5. Pascal triangle 

[0] Z+PASCAL N 
[1] Z+1.1.-(1-N)!lN 
[ 2] Z+ ( 1 1+ N)t .. Z A delete trailing zeros 
[3] Z+;:)II5-Z 

[0] Z+CENTER A;T 
[1] AA I simple character matrix with trailing blanks 
[2] T++/A\' '=~A 

[3] Z+(-L.SxT)~A 

Solutions 2c 

1. One possible modification is as follows: 

[0] Z+L Compress R;BV;I 
[1] (BV !)+L 
[2] Z+BV/[I]R 

2. Values are: 

a. 2-/10 S 2 12 6 
S 3 -10 6 

b. -2-/10 S 2 12 6 
-S -3 10 -6 

c. 2p/2 3 4 
3 3 444 

d. -2p/2 3 4 
2 2 2 3 3 3 3 

3 a. Each of the items of V is replaced by the prototype of V which is (0 ) for 
the test case. 

b. « 2xp ··V) p -co -1)COMPRESS··V 
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4. There are no others. This is discussed in more detail in Section 5.5.3.1. 

5. Scan 

6. a. [OJ 
[1 J 
[2J 

Z+DTB R 
+0 IF(O=pRlv' '~t~Z+R 

Z+DTB -HR 

b. One possibility is to use scan, e.g. 

[OJ Z+Dtb R 
[1] Z+~(v\~R~' 'l/~R 

c. Use DTB"VW or Dtb"VW. 

7. a. x/+/"2,/l5 

b. 3 

8. [OJ 
[1] 

[2J 

4/'ABC' 

Z+L FIND R:T 
T+-1+pL 
Z+«-1+Rl1ltOl,£(cTp1l,"(-Tl~-(+\RlcR+L!R 
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9. v/«c2 2lp"(1 0 0 1)(110 1)(10 11)(111 1))!"cMAT 

or more briefly 

v/«c2 2lp"(c4 2lT"9 13 11 15l!"cMAT 

Solutions 3a 

1. a. (+f~PRICESxSTOCKS>Olt+f~STOCKS>O 

55.633 24.75 43.3 24 76.5 
b. (~+f~PRICESxSTOCKSlt+f~STOCKS>O 

56.222 24.75 39.108 24.75 76.5 

2. '-NETMU 
2 3 5 1 243 3 1 4 2 

which can be translated into component names by 

~(."NETMUlD""ccCNOS 

X801 X802 X803 
X805 X801 X802 X804 X803 
X803 X801 X804 X802 

3. The Cash Register System 
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[OJ Z+I RECEIPT STOCK;T 
[ 1 J A STOCK I vector of vectors - each item consists of 
[2 J A (inventory no.)(item name)(unit amount)(costs/unit) 
[3 J A I I vector of inventory numbers in stock 
[4J T+;;:t"STOCK 
[5J Z+;:,,."STOCK[T1IJ 

;:,STOCK 
211 THREADIES 
312 FLATONES 
654 LOTSAVOLTS 

1000 1.98 
1 1.09 
2 1.55 

211 654 RECEIPT STOCK 
THREADIES 1000 1.98 
LOTSAVOLTS 2 1.55 

Solutions 3b 

1. Multiplier is between 

t~«.MTAB)[TJ)IF .5>+\(.PTAB)[T+4.MTABJ 
45.993 

and 

t«.MTAB)[TJ)IF .5<+\(.PTAB)[T+4.MTABJ 
48.173 

2. +/"10 12 0 .NPV REV REV1 REV2 
19005 12510 13697 
17947 11896 13002 

3. The expressions are evaluated for the particular value BANK given in the exer-
cise. 

a. pBANK 
4 

b.(i) +/ .. +/ .... BANK 
15 34 -6 25 

(ii) +/"+/" "orBANK 
34 44 11 25 

(iii) I +/"+/" .. OLBANK 
19 10 17 0 

c. +\ .. +/ .... BANK 
20 15 15 34 -6 -6 25 25 

d. +/+/ .... BANK 
54 14 

e. +/e:BANK 
68 
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4. Last Trades a. Find last trade of each stock: 

[OJ Z+LAST_TRADE X:T:SYM 
[1J T+8X 
[2J SYM+T[:1J 
[3J z+8«SYMlSYM)=lPSYM)/[1JT 

STP 
MMM 3:25 95 
T 3:27 36.5 
GM 3:31 43 
MMM 3:33 42.75 
IBM 3:45 102.25 
IBM 3:57 102.125 
GM 4:02 43.125 
GM 4:04 43.375 
IBM 4:04 102.25 
T 4:05 36.75 
IBM 4: 12 102.5 

LAST_TRADE STP 
MMM 3:33 42.75 
GM 4:04 43.375 
T 4:05 36.75 
IBM 4:12 102.5 

b. Last trade of a given stock. 

[OJ Z+S STK_LAST_TRADE X:T:SYM 
[ 1 J AS: stock symbol character vector 
[2J T+8X 
[3J SYM+T(:1J 
[4J Z+«SYMlSYM)=lPSYM)/[1JT 
(5J T+Z(;1J 
(6J Z+Z(TN-' ')lCS:J 

'GM' STK_LAST_TRADE STP 
GM 4:04 43.375 

c. Enhanced solution if the stock is not traded: 

[0] Z+S Stk_last_trade X:T;SYM 
[1J SYM+1D[2]T+8X 
[2J Z+8«SYMlSYM)=lpSYM)/[1JT 
[3] I+(Z[:1]N-' ')lCS 
[4J +L1 IF I>tpZ 
[5J +0 Z+Z[I:] 
[6J L1:Z+'Stock ',S,' not traded' 

'GM' Stk_last_trade STP 
GM 4:04 43.375 

'AA' Stk_last_trade STP 
Stock AA not traded 

d. Return the last trade after a given time: 
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[OJ Z+TIME TIM_LAST_TRADE X;T;SYM;TIM 
[1J TIME+.':.' CHANGE TIME 
[2] TIM+2D[2JT+9X 
[3J TIM+."Cc:':.')CHANGE"TIM 
[4] SYM+1D[2JT+CTIME<TIM)/[1JT 
[5] Z+9CCSYMtSYM):tpSYM)/[1JT 

'4:00' TIM_LAST_TRADE STP 
GM 4:04 43.375 
T 4:05 36.75 
IBM 4: 12 102.5 

(See Section 1.4.2. for CHANGE.) 

Solutions and Notes 4a 

1. In (a) and (b) the right argument is a scalar, and scalar expansion takes 
place. (b) means apply reshape twice, once with left argument 2, and then with 
left argument 3. 

a. DISPLAY 2 3pc:V 

r+ 

'" r" I r"---' r· 
I 14 5 61 14 5 61 14 5 61 
I L..-----l L..-----l L..-----l 

I r· I r· I r" I 
1 14 5 61 14 5 61 14 5 61 
I L..-----l L..-----l L..-----l 
L£ 

b. DISPLAY 2 3p"c:V 

r" 
I .---, r" I 
I 14 51 14 5 61 
I L..--.J L..-----l 
L£ ____________ ~ 

(c) fails because the numbers of items on each side of the p" are not equal. 

V+4 5 6 
2 3p"V 

LENGTH ERROR 
2 3p"V 
1\ 1\ 

In (d) the items of V are scalars and so enclosing each of them makes no differ
ence, that is the enclose and each cancel each other out and this phrase is 
exactly the same as 2 3pV. 
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d. DISPLAY 2 3pc-Y 
r+----, 
-1-4 5 61 
14 5 61 
L~---l 

(e) and (f) both fail because the left argument of p must be simple. 

e. (c2 3)pY 
DOMAIN ERROR 

(c2 3)pY 

" " 

f. (c2 3)pcy 
DOMAIN ERROR 
(c2 3)pcY 

" " 
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In (g) the derived function p" has a scalar left argument and a vector right 
argument, so the former is scalar-expanded and item by item execution of p 

results in a three-item vector. 

g. DISPLAY(c2 3)p-Y 
r+------------------------, 
I r+----, r • I r+----, 
I -1-4 4 41 -1-5 5 51 -1-6 6 61 
I 14 4 41 15 5 51 16 6 61 
I ~---l L~---l L~---l L€ ________________________ ~ 

In (h) reshape-each has 2 scalar arguments. By the each rule both are disclosed 
prior to function application and the result is enclosed to give finally a depth 
two result. 

h. DISPLAY(c2 3)p-cY 

I 
I r+----, 
I -1-4 5 61 
I 14 5 61 
I ~---l 
LE:------I 

2 a. AB CDE 
b. ACDE BCDE 
c. AC BD 
d. ABCDE 

3. Y 
A9 B12 B9 b9 B10 
(D ~(DAY.~Y)D-cY 

b9 A9 B12 B10 B9 
(ii) Y[DCS.~YJ 
A9 B9 b9 B10 B12 

e. 
f. 
g. 
h. 

AB CDE 
ABCDE 

LENGTH ERROR 
AC AD AE BC BD BE 

or DAF.(O.l25)o.+DAF'Aa' 

5. v/€Y1t..··cY2 or v/€Y1€"cY2 
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6. a. (1pV)IF€"/('AB'~V)('C'~(pV)t3+V 

b. Z IF 'C'C(Z+(1pV)IF'AB'~VH"cV 

7 a. Total words 

267 

WORDS+(1+GETTYSBURG~' ')cGETTYSBURG 
pWORDS 

b. Number of distinct words 

267 

UWORDS+WORDS-" c ' •• ; I - , 

pUWORDS 

1'1 map upper case to lower case 

1'1 remove punctuation 

FIRST+t "UWORDS 
ALPHA+'abcdefghijklmnopqrstuvwxyz' 
ALPHA+ALPHA.'ABCDEFGHIJKLMNOPQRSTUVWXYZ' 

StUWORDS 
Fourscore and seven years ago 

( t "UWORDS) + ALPHA[ 26 I ALPHA 1 FIRST] 
StUWORDS 

fourscore and seven years ago 

139 

1'1 determine number of distinct words 

DISTINCT+( (UWORDS1UWORDS) =1 pUWORDS) /UWORDS 
pDISTINCT 

c. Concordance 

139 

139 2 

1'1 determine occurrences of each distinct word 

TOTALS++/DISTINCTo.:UWORDS 
pTOTALS 

DISTINCT_CT+DISTINCT.[1.1]TOTALS 

pDISTINCT CT 
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10t[1]SORTED_CT 
that 13 
the 11 
we 10 
to 8 
here 8 
a 7 
and 6 
nation 5 
of 5 
have 5 

8. It transforms it into a sentence. 

Solutions 4b 

1. 

a. 

b. 

or 

[0] 
[1 ] 

[0] 
[1] 

[0] 
[1] 

[1] 

Z+DTB R 
Z+~(v\~R~' ')/~R 

Z+DTBM R 
Z+DTB"c[2]R 

Z+L INDEX R 
Z+( (cDTB R)::"DTBM L)/ltpL 

2. a. ".··c[2]M 

b. " ... c[r/lppA]A+·.·.A 

Solutions 4c 

1. A+2 3p16 
B+3 
C+'APL' 
E+(cA).B.cC 
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a. DISPLAY OpE 

re shape = 0, depth = 2 
I r+----, 
I +0 0 01 
I 10 0 01 
I L..---J 

L£ 

b. DISPLAY tOpE 

r+----, shape = 2 3, depth = 1 
+0 0 01 
10 0 01 
L..---J 

c. DISPLAY tOpeE 

r· shape = 3, depth = 2 
I r+----, r--' 
I +0 0 01 0 I I 
I 10 0 01 l.....-J 

I L..---J 
L£ 

The remaining answers are given in a condensed notation. 

value shape depth 
d. 3 1 g. 
e. RANK ERROR h. 
f. 3 10 0 i. 

2. (a) and (c) reduce depth, the others do not. 
(c) is subject to INDEX ERROR, (a) is not. 
(b) requires that the rank of A is one or zero. 
(d) and (e) are fully equivalent. 

value 
3 
0 

10 

shape 
10 
10 

0 

(i) (a) and (c) are the same, (b),(d) and (e) are the same. 
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depth 
0 
0 

(Hint - confirm by T· • :T+ (tA) ( HA) ( 1:)A) (A[ 1] ) ( 1 DA») 

(ii) all of them are scalar 1 except (b) which is vector 1. 

3. The answers are given in a pseudo-APL notation in order to highlight dis
tinctions between e.g. 10 and the character 'blank'. 

a. (i) (0 0) ( 0) ( , ') (ii) (0 0) 

b. One is two zeros, the other is three blanks. 

c. (i) ( 1 2) (3) ('ABC') (0 0) (0 0) 
(ii) ( 1 2 0 0 0) (3 0 0 0 0) ( 'ABC ' ) 

(iii) ('ABC') (3) ( 1 2) ( , , ) ( , , ) 

d. (i) 1 2 0 (ii) D (iii) 1 3 A 
3 0 0 2 0 B 
A B C 0 0 C 
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4. a. :>'THIS' 'IS' 100 
T HIS 
I S 

100 0 0 0 

b. :> t .. t 3 

c. c[21]:>V47 
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5. -1'1' always returns a one item vector containing the first item; 'I'd> returns the 
last item itself. 

6. a. 1 b. 1 2 3 c. 1 4 d. 1 2 3 

7. d>pM or ptslM in both cases. 

8. t"V48[42:>"V48] or t"V48[420"V48] 
GETTY TRUMP 

9. first 

Solutions 4d 

I a. DISPLAY x/2 3 OpO 
r+------, 
-1-1 1 11 
11 1 1 I 
L..-.-.J 

b. DISPLAY x/2 0 3pO 
r9, 
-1-01 
101 
L..J 

C. DISPLAY x/c2 0 3pO 
I 
I r r· I 
I -I-d>0 0 01 
I II I 
I 110001 
I LL..-.-.J 
LE:----...J 



244 APL2 IN DEPTH 

2 a. DISPLAY t( 10HOpe2 3pO 
r+-----, 
+0 0 01 
10 0 01 
L....---1 

b. DISPLAY '.-Ope2 3pO 
r---. 
+0 01 
10 01 
10 01 
L....---I 

c. DISPLAY .ee3 4)p-Ope2 3pO 
r· I 
+0 0 0 01 
10 0 0 01 
10 0 0 01 
L.... I 

Some implementations may give the same answers to parts (b) and (c) as to part 
(a). 

3 a. DISPLAY p/2 3 OpO 
r" 
+ ,.e, ,.e, ,.e, 
I 101 101 101 
I L....J L....J L....J 

I ,.e, .-e, ,.e, 
I 101 101 101 
I L....J L....J L....J 

LIE 

b. DISPLAY p/Ope2 3pO 
i 
I r---. 
I 12 31 
I L....---I 

LIE 

C. eV 
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4 a. DISPLAY ~/Opc2 3pO 
i 
I r-, 
I 10 11 
I L_--.J 

LE: 

b. DISPLAY :::>/Opc2 3pO 
i i 
I r61 I 
I 101 I 
I L_J I 
LE:----.J 

c. DISPLAY t/Opc2 3pO 
i 
I r---' 
I 12 31 
I L---.J 

LE: 

d. DISPLAY +/Opc2 3pO 
i 
I r--, 
I 10 01 
I L---.J 

LE: 

e. DISPLAY -/Opc2 3pO 
i i 
I r61 I 
I 101 I 
I L_J I 
LE:----.J 

f. DISPLAY ./Opc2 3pO 
i 

re, I 
+01 I 
101 I 

I L-J I 
LE:----.J 
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5 a. DISPLAY pt./Opc2 9pO 
r+---, 
12 01 
L.,.--I 

b. DISPLAY pt./Opc2 9 9pO 
DISPLAY pt./Opc2 9 9pO 

r+----, 
12 9 01 
L.,.----.J 

c. DISPLAY pt./Opc2 9 9 9pO 

r I 
12 9 9 01 
L.,. I 

Eventually what happens is 

DISPLAY pt./Opc2 9 9 9 9 9 9 9pO 
WS FULL 

DISPLAYpt./Opc2 9 9 9 9 9 9 9pO 

Solutions 5a 

1. One way to write the operator CONSEC is 

[0] Z+L(P CONSEC)R 
[1] Z+Z/lpZ+((L-1)p1)!2 P/R 

V 
2 3 4 3 45227 

2<CONSEC V Rfor strictly increasing sequences 
1 2 4 5 8 

3~CONSEC V Rfor non-decreasing sequences, etc. 
6 

2. a. It is convenient to write the operator BASE on the assumption that two 
functions TODEC and FROMDEC exist to convert to and from decimal notation. 

[0] Z+L(P BASE Q)R 
[1] (L R)+Q TODEC"L R 
[2] Z+((pZ)p10)~Z+Q FROMDEC L P R 

The functions TODEC and FROMDEC can then be written: 
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[0] Z+L FROMDEC R 
[1] Z+((1+rLeR)pL)TR 

[0] Z+L TODEC R 
[1] Z+((pZ)pL)LZ+10 FROMDEC R 

16+BASE 7 23 
42 

111 H BASE 2 11 
101 

b. Extend to process arrays by using each, e.g. 

O+A+2 2p1111 110 10010 100001 
1111 110 

10010 100001 

AfBASE 2··11 
101 10 
110 1011 
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3. ROOT is a dyadic function. ROOTOP achieves the identical result for scalar 
arguments by producing at an intermediate stage a monadic derived function 
which could be called the pth root-function. Using ROOTOP can sometimes avoid 
the need for enclosure, for example: 

2 3 ROOTOp·· t 5 
1 1 1.4142 1.2599 1.7321 1.4422 2 1.5874 2.2361 1.71 

2 3 ROOT OO t5 
LENGTH ERROR 

2 3 ROOT··t5 
A A 

(e2 3)ROOT t5 
1 1 1.4142 1.2599 1.7321 1.4422 2 1.5874 2.2361 1.71 

4. band c 

Solutions Sb 

1. a. PRODUCT : Apart from the function name the only change required is to 
replace + by x. 

b. JOIN: The changes required here are more subtle and require the use of e 
and t on account of the non-pervasiveness of catenate. 

[0] Z+JOIN R 
[1] +L1 IF 1=pR 
[2] +0 Z+e(tR),~JOIN 1~R 
[3] L1:Z+etR 

2. Change line 4 of Path so that the function reads: 
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[OJ Z+L PAth R;T 
[1J +L1 IFA/(L££R).1S:R 
[2J +0 Z+10 
[3J L11+L2 IF(10):pR 
[4J T+c1+(pR)T-1+(.L£"£"R)11 
[5J +0 Z+T.L PAth T~R 
[6J L2IZ+(Cl0).L PAthtR 

3. A suitable function to change all occurrences is 

[OJ Z+L CHALL R 
[1] +L1 IFN(tL)££R 
[2] +0 Z+L CHALL L CHANGE R 
[3] L1IZ+R 

4. a. The following is a recursive definition of the POWER1 operator: 

[0] Z+L(P POWER1 Q)R 
[1] +L1 IF Q=O 
[2] +0 Z+(L P POWER1(Q-1)R)P R 
[3] L1IZ+L 

3 *POWER1 3 2 
6561 

12xPOWER1 3 2 
96 

b. The following is a recursive definition of the POWER2 operator: 

[0] Z+L(P POWER2 Q)R 
[1] +L1 IF Q=O 
[2] +0 Z+L P L P POWER2(Q-1)R 
[3J L1IZ+R 

c. The following sequence illustrates the convergence of the iterative solution 
of the equation y = cos(y): 

20POWER2 10 
0.7442373549 

20POWER2 25 1 
0.7390713653 

2oPOWER2 50 1 
0.7390851339 

2oPOWER2 100 1 
0.7390851332 

d. Use POWER2 as follows: 

CRYPT+CODE CODIFY POWER2 4 'DOG' 

The receiver decodes using 

CODE DECODE POWER2 ~ CRYPT 
DOG 

where DECODE is given by 



Appendix A. Solutions to Exercises 

[0] Z+L DECODE R 
[1] Z+ALF[LlR] 

5. An operator POLISH and compatible functions MEAN and MEDIAN are: 

[0] Z+(P POLISH)R 
[1] Z+-(€P-c[1]R)-[2]R+R-[1]€P-c[2]R 

[0] Z+MEAN R 
[1] Z+(+/R)+pR 

[0] Z+MEDIAN R 
[1] Z+.5x+/R[r.5xO 1+pR+R[4R]] 

T 
0 6 6 
4 0 2 

MEAN POLISH T 
-3 2 1 

3 -2 -1 
MEDIAN POLISH T 

-4 1 0 
4 -1 0 

Solutions and Notes Sc 

l. 
1 8 
2 11 

1 
2 

2. a. 

b. 

c. 

d. 

./H 
9 10 

12 13 
c[2]H 

8 9 
11 12 

ABC 

ABC 
DEF 

ABC 
GHI 

ABC 
DEF 

GHI 
JKL 

3. a. [0] 
[1] 

b. Define 

6 5 4 3 9 9 
2 6 5 9 9 

10 6 5 4 3 9 9 
13 2 6 5 9 9 

./M 
DEF 

• j"'M 

./A 
DEF 
JKL 

./-A 

Z+L SUBMAT R 
Z+(cL)p-L[1]./[1]L[2]./R 

249 
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[0] Z+TEST R 
[1] Z+A/(N2 20R),(1 2)(2 3)(3 2)O-cR 

The given pattern can therefore be tested for by 

o 0 
o 0 

TEST" 3 3 SUBMAT M54 

c. Generalizing this test to cover any pattern requires the definition of an 
APL2 object to represent a pattern. One possibility is to use a three item vector, 
the first item of which is the shape of the pattern, the second item is a vector of 
the co-ordinates of the os, and the third item a vector of the co-ordinates of the 
1S. The pattern above would then be represented by 

PAT+(3 3)(c2 2)«1 2)(2 3)(3 2» 

Care has to be taken to ensure that the two vectors of coordinate vectors are of 
equal depth, hence the explicit enclose in the second item. A function which 
tests for the occurrences of a binary pattern L in a binary matrix R is 

[0] Z+L PATIN R 
[1] R+(+L)SUBMAT R 
[2] Z+~A/A/--(NL[2JSEL-R)(L[3JSEL-R) 

[oJ Z+L SEL R 
[1] Z+LO-cR 

Hence the test above could be achieved by 

PAT PATIN M54 
010 
001 

4. a. (;I!\(3xpCV)p1 1 O>\CV 

b. (;I!\(1.5xpCV)p1 01>\CV 

c. (A\'A'=LINE)/LINE 

5. a. First observe that the shape vector rule requires that the outer structure be 
a two by two matrix. To determine the items, e.g. first row, second column, the 
each rule must be applied, i.e. the vector 2 2 and the matrix 4 1 p , ABCD' are 
both disclosed, p is applied, and the result enclosed as a scalar to take its place 
as item [1; 2 J of the result. Since none of the items so enclosed exceeds depth 
one, the overall depth of the outer product is two. The final result is therefore 

«(2 2)3)o.p6(4 1p'ABCD') 
6 6 AB 
6 6 CD 

6 6 6 ABC 

b. Start by displaying the two matrices A and B: 
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DISPLAY A B 
r+--------, 
I r+---, r+---, 
I -1-1 21 -1-4 31 
I 13 41 12 11 
I L~----l L~----l 

LE:-------' 

The APL2 rule says enclose along last and first axes, and take the outer 
product: 

DISPLAY-(c[2JA)(c[1JB) 
r+--------, r+'-------, 
I r+---, r+---, I r+---, r---, 
I 11 21 13 41 I 14 21 13 11 
I L~----l ~----l I ~----l ~----l 

LE:-------' LE:-------' 

DISPLAY (c[2JA)·.xc[1JB 
r+'--------. 

-I- r+---, r+---, 
I 14 41 13 21 
I ~----l L~----l 

I r+---, r---, 
I 112 81 19 41 
I ~---l ~----l 

LE:------....I 

The numbers appearing in the above display are clearly those which arise in 
"row-in to-column" evaluation of the matrix product. The result is completed by 
taking the sums of the numbers within each inner box: 

DISPLAY +/-(c[2JA)·.xc[1JB 
r+-----, 

-I- 8 51 
120 131 
~-----l 

which is the same as 

DISPLAY A+.xB 
r· I 

-I- 8 51 
120 131 
~-----l 
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6. a. 2 4'.+1 4 6 
3 6 8 
5 8 10 

b. 2 4 0 ,,1 4 6 
2 1 2 4 2 6 
4 4 4 4 6 

c. 2 2°.P14 
1 1 2 2 3 3 4 4 
1 1 2 2 3 3 4 4 

d. 2 3°.P14 
1 2 2 3 3 4 4 
1 1 1 222 3 3 3 4 4 4 

e. 2 4 6 o .,'AB' 
2 A 2 B 
4 A 4 B 
6 A 6 B 

f. 2 46o.,'AB' 'CDE' 
2 AB 2 CDE 
4 AB 4 CDE 
6 AB 6 CDE 

7. a. 3 2 1p.p3 2 1 
3 2 
1 3 
2 1 

b. 3 2 1p.p3 2 1 
222 3 
1 1 222 
3 1 1 

c. 1 2 3,. p4 5 6 
456 456 

d. 1 2 3p .. 4 5 6 
6 

e. 1 2 3 .... +2 3 4 
3 

f. 1 2 3+ .... 2 3 4 
1 

8. a. 1.875 in both cases. 

b. 2 2.5 3 
2.5 3 3.5 

c. 3 3.5 4 

Result is weighted average with weights in 
descending powers of 2, viz. 4 2 I 1. 

in both cases - table of averages by pairs 

for AVG - Yl of 1 2 3,1 2 4, and 1 2 5. 

3 4 3 • 5 4. 5 4 5 for MID - (c: 1 2) added to Yl of 
-/3 1 2, -/4 1 2, and -/5 1 2. 
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d. 7.5 for AVG - .5x+/l5 

3.5 4.5 for MID - (c: 1 2) added to 1/2 of - / 3 4 5 1 2 

e. 1.9375 in both cases. 

f. 4 for AVG.MID 

7.5 for MID.AVG 

Result of intermediate outer product is 
1 2 3 4 5 so final result is AVG/ 15, that is 
weighted average with weights 8 4 2 1 1. 

AVG/-(c:1 2)o.MID c:3 4 5 

++ AVG/"·c:3. 5 4.5 

++ AVG/3.5 4.5 

MID/.5x+/1 2 3 4 5 

Solutions Sd 

1. a. A/""CONSo. €PROD b. v /""CONSo. €PROD 

To obtain the vector of vectors use 

(c: [2JM)COMPRESS··Q -HpM 

as described in Section 4.2.1. 

2. a. It returns the digit sums of the first 20 positive integers. 
b. The left argument of T must be simple - the inner product means that a 

second enclose is applied to 10 10 so that a non-simple object, viz. c: 10 10 is 
the left argument to each of the 20 separate TS. 

Solutions Se 

1. [OJ Z+L(P ONLYS Q)R 

2. a. 

[1J +L1 IF 1<:Q 
[2J +0 Z+L(P ONLY Q)R 
[3J L11+L2 IF~A/O=pQ 
[4J +0 Z+L 
[5J L2IZ+(L(P ONLY(tQ»R)P ONLYS(1~Q)R 

[OJ 
[1] 

Z+L(P Trace)R 
III ' 0+ ( Z+' , LEX,' P R)" +' , , LEX, , 'P" R ' 

b. [OJ Z+L(P Simple)R 
[1J +L1 IF Z+2>:R 
[2J +0 Z+III,LEX,'(P Simple)··R' 
[3J L1IZ+IIILEX,' P R' 
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3. [0] 
[1] 

Z+L(P Comp1 Q)R 
Z+III, LEX,' P Q R' 

4. One solution is 

[0] Z+(P SECANT)X;T 

APL2 IN DEPTH 

[1] Z+(-/(eIlX)xTH-/T+P"X A interpolate new point 
[2] Z+ (ell (xP Z) :xP"T) /T+ ( tX) , Z, 1.j.X A select interval containing root 

To solve f(x) =0 where f(x)=2-x(x-I), and using start values 1 and 7 proceed as 
follows: 

[0] Z+F X 
[1] Z+2-XxX-1 

tF SECANT RPTUNTIL NEAR 1 7 
2 

Solutions Sf 

I. A possible function is 

[0] Z+SHORTEN R 
[1] Z+(,-1.j.t"R)' '(-1tR) 

2. Predicates may be defined as 

[0] Z+ISW2 R 
[1] Z+'WILLIAM'=2~R 

[0] Z+SCOTCH R 
[1] Z+'MC'=2t(pR)~R 

3. ~NAMES IF~ISW2"NAMES 

4. E:"~SHORTEN UNLESS SCOTCH .. NAMES, .... ' , 

5. Define a function NOTSCOTCH as the negation of SCOTCH (using ~SCOTCH 
won't do!) and use 

~E:"LENGTHEN UNLESS NOTSCOTCH .. NAMES, .... ' , 

[0] Z+LENGTHEN R 
[1] Z+(-1.j.R),c'MAC',2.j.E:-1tR 

6. CH"NAMES),,[lOrH"NAMES 
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Solutions 6a 

1. Change t"H s in to 

[OJ 2+L 66Isin R 
[1J +L1 IF(tL)GTt2~R 

[2J +0 2+1+L IsintR 
[3J L1:2+1+L Isint~R 

6 7 8 Isin"c:TR1 
3 2 

'ANN' 'DAVID' Isin "c:TR3 
2 3 

2. The following function sequence obtains subtrees as specified: 

[OJ 2+L SUB R 
[1 J +L1 IF O=pR 
[2J +0 2+L 6SUB R 
[3J L1:2+10 

[OJ 2+L 6SUB R 
[1J +L1 IF L=2~R 
[3J +0 2+L 66SUB R 
[2J L1:2+R 

[OJ 2+L 66SUB R 
[1 J +L1 IF(tL)GTt2~R 

[2J +0 2+L SUBtR 
[3J L1:2+L SUBt~R 

8 SUB TR1 
7.5 8 9 

'ANN'SUB TR3 
ANN DAVID 

Solutions 6b 

255 

1. A function MAKENET which constructs a connectivity matrix from a vector of 
co-ordinate vectors is: 

[OJ 2+L MAKENET R 
[1J 2+(LpO)6MAKENET R 

[OJ 2+L 6MAKENET R 
[1J +L1 IF O=pR 
[2J +0 2+(L 66MAKENETtR)6MAKENET 1~R 

[3J L1:2+L 

[OJ 2+L 66MAKENET R 
[1J 2+tL((RDL)+1) 
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2. a. Use say (cNETt) REACH·· 1 3 - answer is all nodes. 

b. Use NETt PREC 3 - answer is node 2 only. 

3. T+SYMNET MST 1 
T.[.5JTO"cSYMNET 

4. Use MSTV - answer is 9 by building roads 15, 54, 43 and 42. 

APL2 IN DEPTH 
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Scalars and Pervasive Functions 

For scalar S 

For pervasive F 

Indexing 

S ++ cS 

(F R) ++ F""R 

Informally the shape of the result is the shape of the index and is independent 
of the shape of the data" 

For valid I, 
for vector V rov ++ V[I] ++ (cI)::>V 

for array A and IDA (p, I) ++ ppA 

- informally the shape of the index is the rank of the array" 

Operators 

Operators have long left scope and short right scope, whereas functions have 
long right scope and short left scope" 

Each 

For monadic F and Z+F""R Z[I] ++ cF::>R[I] 

For dyadic F and Z+L F""R Z[I] ++ c(::>L[I])F::>R[I] 

For scalar F, scalar s, and arrays A B C D 
SF"" A B ++ (S F A)(S F B) 

A B F"" S ++ (A F S)(B F S) 

A B F"C D ++ (A F C)(B F D) 
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Reduction 

Reduction reduces rank, not depth_ 
For vector v (F/V) ++ V[1] F V[2] F '" 

(F/-V) ++ (F/V[1])(F/V[2]) 
(Fr-A) ++ cF/~A 

For vector V 
For array A 

Outer Product 

For Z+Lo ,p R 
for valid I,J 

Inner Product 

Replicate 

For valid L,I,A 
for L/[IJA 

n-wlse Reduction 

For scalar s, vector V 

First 

Take/Drop 

Z[I;J] ++ c(~L[I])Q~R[J] 

(S+pS F/V) ++ 1+pV 

(tA) ++ (cT)~(T+(ppA)p1)tA 

(pItA) ++ II 

(pI+A) ++ Or(pA)-I 
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Section Topic 

1.1.1 Complex numbers 
1.2.1 Separating and Grouping 
1.2.4 Writing Reports 
1.2.6 Grouping like items 

Stem and Leaf Plot 
1.3.4 
1.3.5 

1.4.2 

1.5 

1.5.1 
1.5.2 

Character to Numeric Conversion 
Deleting blanks 
Intersection of data items 
Passing Multiple Arguments 
Selective Assignment in Functions 
Scalariza tion 
Descalariza tion 
Increasing Rank 
Copying Structure 
Process numerics only in a mixed array 
Convert an array of any rank into matrix 
Alphabetic sorting of vectors and matrices 
Averaging tied ran kings 
Schoolmaster's Rank 

1.6.2 Test for all items in a vector the same 

Functions/Operators 

CHANGE 

UPRANK MATRIFY 

SORTC 
TUP TDOWN 
SCH 

1.6.3 Find all occurrences of one string within another 
Delete Multiple Blanks 
Pattern Matching 

2.1.1 Multi-path selection (scatter picking) 
Frequency Distributions 
Mid-points in Euclidean geometry MIDPT 

2.1.3 Each with index of 

2.2.1 

2.2.2 

4.2 

Each with grade 
The conjunction IF 
Multiple copies of matrix rows 
A voiding Blanks in List Lengths 
Reversing scans 
Partitioning a Record into Fields 
Word Search 
Spell Check 

IF 
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4.3 
4.3.3 
5.1.2 

5.2 

5.5.1 
5.5.3 

5.5.3.1 
5.5.6 

5.5.7 

5.5.7.2 
5.6.1.1 
5.6.1.2 
5.6.1.4 

5.6.2 

Enlarging a List of Words 
Vector Merge 
Random Sentence Building 
Catenation of Matrices 
Partial Enclosure 
Find co-ordinates of Is in binary matrix 
Binary matrix as partitions of column indices 
Distinguishing character, numeric, etc. 
Converting vector of names to a matrix form 
Moving functions along an axis 
Table Building 
Implications of Binding 
Hexadecimal Arithmetic 
An Operator for Padding Matrix Catenations 
Selective Enlist 
Reduction applied to matrix multiplication 
Co-ordinates of Spirals 
Scans with Binary Arguments 
Delete leading blanks from a character vector 
Display comments only on an APL line 
Remove first occurrence only 
Spacing character vectors 
Selecting alternate items 
Adding columns of zeros to table 
Parity checking 
Gray codes 
Finding vowels in words 
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SENTENCE 
VCAT 

COMPRESS ONES 

TYPE 

ALONG 
TABLE 
RED LRED 
DTH HTD HEX HEXE 
NEXT 
ENLIST 
DF 
SPIRAL 

Gradient of mid-points GRAD MIDPT 
Sampling extreme values from uniform distribution 
Sequences of Inner Products 
Inne'r Products with Nesting 
Displacement Vectors 
Outer and Inner Products with Explicit Each 
Sequences of Inner Products with Nesting 
Decode and encode for arrays 
Selective function application 
Selective Processing 
Repetitive Prompts 
Iterative solution of non-linear equations 
Non-linear function fitting 
Data Filtering 

The ELSE Operator 

SOMECHAR SMALL 
ASK NULL 
COS NEAR NEWTON 
FIT ALLNEAR 
NUM INTEGRAL 
FILTER 
ELSE 



Index 

A 
Alternator 145 
Ambi-valency 132 
Ancestors 198 
Atomic vector 45 
Axis qualifier 15,16,17,19,27,67,68,110,113,228 

B 
Binary Trees 200 
Binding 122,125,160, 173, 175 
Blanks 71, 73, 102 
Bracket indexing 24 

C 
Calendar 14, 227 
Capacity 208 
Case statement 104 
Catenate 5, 125, 136, 156, 247 
Catenation of matrices 98, 128 
Collating sequence 46, 50, 206, 230 
Comments vi, 64, 144, 158 
Commute operator 122 
Complex conjugate 225 
Complex numbers 4 
Compression 68,101, 181 
Concordance 97,240 
Connectivity matrix 209, 210, 218, 255 
Control structures 172 
Copying structure 39 
Critical path 212 
Cross-sections of arrays 24,89,103, 109, 139,234 
Cryptography 138 

D 
Data filtering 181 
Data-equivalent trees 205 
De Moivre's theorem 4 
Decode 169 
Decorators 40 
Deleting blanks 73, 102 
Depreciation 82 
Depth 1,47,89,93 
Derived functions 36,53,54,57,60,67,68,70,71,84, 

93, 121, 122, 124, 132, 135, 139, 149, 160, 165, 177, 247 

Descalarization 38, 98 
Dictionary 94 
Disclose 11,12,15,16,27,90,95,98,103,108,109,111 
Discounted cash flow 82 
Displacement vectors 162 
Distance table 219 
Drop 103, 258 
Duality 145, 147 

E 
Each 25, 36,54, 55, 57, 60, 61, 62, 70, 75, 84, 85, 92, 9~ 

115,135,141,149,150,160,164,173,177,184,238 
Each rule 91,139,140,151,154,239 
Empty arrays 114 
Enclose 11,15,16,17,19,91,93,95,111,127,160,18,\ 

238 
Encode 169 
Enlist 5, 9, 39 
Execute 174, 176 
Existential quantifier 153 
Expand 71, 108, 149 
Extreme values 155 

F 
Fill functions 114 
Fill item 24,69, 107 
Find 48,73 
First 21,23,37,103,111,258 
Fitting non-linear functions 179 
Floating scalar rule 13, 24, 38 
Floating systems 12 
F orrnat 39, 40 
Frequency distribution 56, 82 
Function composition 131, 182 
Function phase 2, 139 
Functions 

AD 153 
ADDFROM 212 
ADDROOT 212 
ALLNEAR 180 
ALLOC 214 
ANCIN 198 
ASK 177 
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Functions (continlMd) 
CASE 184 
CENTER 64 
CHALL 248 
CHANGE 36 
COMPRESS 70,72 
COS 178 
CUSPRO 83 
CUTFROM 199 
DIS 7 
DISPLAY 1 
DTB 73,102 
DTH 127 
ENLIST 136 
FIND 73 
FLUX 214 
FRACTNL 174 
FROM 212 
FROMDEC 246 
FROOT 212 
FULNET 209 
GRAD 155 
GT 206 
HTD 127 
ID 217 
IF 69 
INDEX 102 
INS 201 
ISIN 203 
ISW2 254 
JOIN 137 
LAST_TRADE 86,237 
LENGTHEN 189,254 
LVA 216 
MAKENET 218 
MAKET 202 
MATRIFY 38 
MIDPT 56,155 
MNZ 216 
MONTH 14 
MSUB 213 
NPV 84 
ONES 99,216 
ORDINAL 31 
OUTFROM 209 
OUTFROML 210 
PASCAL 64 
PATH 134 
PCENTFOR 82 
PENCL 98 
PREC 217 
PRODUCT 137 
PROTO 3 
PRT3D 63 
PSUB 213 
QUAD 8 
REACH 217 
RECEIPT 81,236 
REPL 51 
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Functions (continlMd) 

G 

REPORT 80 
ROOT 209 
ROOTL 210 
ROUTE 213 
SCH 47 
SCOTCH 254 
SEL 67 
SENTENCE 95 
SHORTEN 254 
SORTC 45 
SPIRAL 142 
START_DAY 228 
STK_LASTJRADE 86,237 
STPATH 199 
SUB 207,255 
SUBT 199 
SUM 133 
SWAP 199 
TDOWN 46 
TIM_LASTJRADE 87,238 
TODEC 246 
TUP 46 
TYPE 108 
UPG 215 
UPRANK 38 
VCAT 98 

Grade-down 43 
Grade-up 43,47,50,60,93, 131,206 
Gradient 155 
Graphs 215, 217 
Gray codes 148 
Grounded systems 12 
Grouping items 5 

H 
Heterogeneity 
Hexadecimal arithmetic 127 
Hierarchical trees 195 

Idempotency 145 
Identity Functions 116 
Identity items 116,212 
Incidence matrix 171 
Index 21,66,103 
Index of 29, 60 
Index with axis 67 
Indexing 24, 257 
Inner product 152,160,164,165,168,217,253,258 
Inverse functions 116 
Iterative solution of equations 138, 178 
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K 
Keys 196 

L 
Labels vi 
Laminate 10 
Level-breaker 23, 134, 197 
Longest path 212 

M 
Match 47 
Matrix multiplication 153 
Maximum flow 208, 214 
Membership 48 
Merging vectors 95 
Mid-points 56, 155 
Minimum Spanning Tree 215 
Moving average 58 
Multiplication table 124 

N 
Nested array 
Net present value 84 
Network flow 213 
Networks 208 
Newton-Raphson iteration 178, 183 
Non-linear equations 178 
Number bases 129 

o 
Operational Research 195 
Operations 53 
Operators 

ALONG 123 
BASE 129 
COM 122 
COMP1 132 
COMP2 132 
CONSEC 129 
DERIV 178 
DOUNTIL 175 
DYALEV 184 
ELSE 182 
FILTER 181 
FIT 179 
HEX 127 
LEVEL 184 
LRED 126 
MONLEV 184 
NEWTON 178 
NEXT 128 
ONLY 172 
PATH 134 
PDERIV 179 
POLISH 138 

Operators (continued) 
POWERI 137 
POWER2 138 
RED 126 
ROOTOP 129 
RPTUNTIL 176 
SEE 122 
SIMPLE 135 
TABLE 124 
TRACE 132 
UNDO 147 
UNLESS 172 
UNSCAN 147 
UPTO 174 

Ordinal numbers 31 
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Outer product 151,152,160, 164,258 

p 
Parity checking 146 
Partial derivatives 179 
Partial disclose 15 
Partial enclose 15, 17,99, 150,228 
Partition 19,21,30,47,56,72 
Pascal triangle 64, 234 
Paths 22,103,106,137,197,210,213 
Pattern matching 49, 73, 157, 250 
PERT diagrams 208 
Pervasiveness 54,57,114,135,164,257 
Pick 21,24,25,27,91,93, 103, 109 
Picture format 40 
Polishing a matrix 138 
Power operator 137 
Precedence 217 
Predicates 189, 254 
Prompts 177 
prototype 3, 107, 109, 112, 114,223 
Proxy data 108 

Q 
Quadratic equations 8 
Quantifiers 153 

R 
Random sentences 95 
Ranking 46 
Ravel 5,9 
Reachability 217 
Recursion 47,73, 133, 182,201,202,209 
Reduction 71, 140,258 
Regressive operation 135 
Replacement 34 
Replicate 68, 108 
Report writing 11, 80 
Reshape 5 
Restructuring 37, III 
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Reversing scans 71, 73, 147 

S 
Scalar extension 56, 109 
Scalar functions 48,54,56,57,92,93, 141, 152, 155 
Scalarization 37, 60 
Scan 71,142, 158, 168 
Scatter indexing 24, 25, 27, 66 
Schoolmaster's rank 47 
Scope 125,160,257 
Secant method 183, 254 
Selection 21, III 
Selective assignment 34, 39 
Selective enlist 136, 196, 204 
Sequences of inner products 160 
Shape 9,60,156 
Shortest path 212 
Simple objects 2, 12, 239 
Sorting 43 
Sparse matrices 209 
Spell check 94 
Spirals 142 
Squad indexing 24 
Stem and leaf plot 21 
Strand notation 6 
Stretch factor 142 
Structure 1,37,39,107,108,121,196 
Structure phase 2, 11 5 
Subtrees 200, 207 
Sweeper 145 

T 
Take 23, 103, 258 
Tied ranks 46 
Titling 63 
Tracing function execution 122, 132 
Tree operations 201 
Trees 195,196 
Type 39,107 

U 
Undirected networks 215 
Universal quantifier 153 
User-defmed operators 121 

V 
Vector assignment 34 
Vector notation 5, 23 

W 
Weighted moving average 58,232 
Without 21, 32, 50, 210 
Word search 94 
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